Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 61(14): 6308-6327, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29920093

RESUMO

The optimization of the 4-methoxy-6-azaindole series of HIV-1 attachment inhibitors (AIs) that originated with 1 to deliver temsavir (3, BMS-626529) is described. The most beneficial increases in potency and pharmacokinetic (PK) properties were attained by incorporating N-linked, sp2-hybridized heteroaryl rings at the 7-position of the heterocyclic nucleus. Compounds that adhered to a coplanarity model afforded targeted antiviral potency, leading to the identification of 3 with characteristics that provided for targeted exposure and PK properties in three preclinical species. However, the physical properties of 3 limited plasma exposure at higher doses, both in preclinical studies and in clinical trials as the result of dissolution- and/or solubility-limited absorption, a deficiency addressed by the preparation of the phosphonooxymethyl prodrug 4 (BMS-663068, fostemsavir). An extended-release formulation of 4 is currently in phase III clinical trials where it has shown promise as part of a drug combination therapy in highly treatment-experienced HIV-1 infected patients.


Assuntos
Descoberta de Drogas , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Organofosfatos/metabolismo , Piperazinas/metabolismo , Piperazinas/farmacologia , Pró-Fármacos/metabolismo , Triazóis/farmacologia , Ligação Viral/efeitos dos fármacos , Animais , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Células CACO-2 , Membrana Celular/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Simulação de Acoplamento Molecular , Organofosfatos/farmacologia , Permeabilidade , Pró-Fármacos/farmacologia , Conformação Proteica , Ratos , Triazóis/metabolismo
2.
Am J Med Genet A ; 173(1): 177-182, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27792857

RESUMO

"Sudden Infant Death syndrome" (SIDS) represents the commonest category of infant death after the first month of life. As genome scale sequencing greatly facilitates the identification of new candidate disease variants, the challenges of ascribing causation to these variants persists. In order to determine the extent to which SIDS occurs in related individuals and their pedigree structure we undertook an analysis of SIDS using the Utah Population Database, recording, for example, evidence of enrichment for genetic causation following the back-to-sleep recommendations of 1992 and 1994. Our evaluation of the pre- and post back-to-sleep incidence of SIDS in Utah showed a decrease in SIDS incidence on the order of eightfold following back-to-sleep. An odds ratio of 4.2 for SIDS recurrence among sibs was identified from 1968 to 2013 which was similar to the odds ratio of 4.84 for death due to other or unknown cause among sibs of SIDS cases for the same time period. Combining first through thid degree relatives yielded an odds ratio of SIDS recurrence of 9.29 in the post-back-to-sleep (1995-2013) subset of SIDS cases where similar calculations of first-third degree relatives for the entire time period of 1968-2013 showed an odds ratio of 2.95. Expanded multigenertional pedigrees showing enrichment for SIDS were also identified. Based on these findings we hypothesize that post back-to-sleep SIDS, especially recurrences within a family, are potentially enriched for genetic causes due to the impact of safe sleeping guidelines in mitigating environmental risk factors. © 2016 Wiley Periodicals, Inc.


Assuntos
Vigilância da População , Morte Súbita do Lactente/epidemiologia , Bases de Dados Factuais , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Linhagem , Síndrome , Utah/epidemiologia
3.
Antimicrob Agents Chemother ; 56(7): 3498-507, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547625

RESUMO

BMS-663068 is the phosphonooxymethyl prodrug of BMS-626529, a novel small-molecule attachment inhibitor that targets HIV-1 gp120 and prevents its binding to CD4(+) T cells. The activity of BMS-626529 is virus dependent, due to heterogeneity within gp120. In order to better understand the anti-HIV-1 spectrum of BMS-626529 against HIV-1, in vitro activities against a wide variety of laboratory strains and clinical isolates were determined. BMS-626529 had half-maximal effective concentration (EC(50)) values of <10 nM against the vast majority of viral isolates; however, susceptibility varied by >6 log(10), with half-maximal effective concentration values in the low pM range against the most susceptible viruses. The in vitro antiviral activity of BMS-626529 was generally not associated with either tropism or subtype, with few exceptions. Measurement of the binding affinity of BMS-626529 for purified gp120 suggests that a contributory factor to its inhibitory potency may be a relatively long dissociative half-life. Finally, in two-drug combination studies, BMS-626529 demonstrated additive or synergistic interactions with antiretroviral drugs of different mechanistic classes. These results suggest that BMS-626529 should be active against the majority of HIV-1 viruses and support the continued clinical development of the compound.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Células Cultivadas , Células HCT116 , HIV/efeitos dos fármacos , HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Células HeLa , Células Hep G2 , Humanos
4.
Virology ; 402(2): 256-61, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20400170

RESUMO

Treatment with HIV attachment inhibitors (AIs) can select for escape mutants throughout the viral envelope. We report on three such mutations: F423Y (gp120 CD4 binding pocket) and I595F and K655E (gp41 ectodomain). Each displayed decreased sensitivity to the AI BMS-488043 and earlier generation AIs, along with increased sensitivity to the broadly neutralizing antibodies 2F5 and 4E10, without affecting the rate of viral entry or sensitivity to the entry inhibitors AMD-3100 and Enfuvirtide. We also observed that I595F did not substantially increase envelope sensitivity to HIV-infected patient sera. Based on these observations, we propose that although F423Y, I595F and K655E may all affect the presentation of the 2F5 and 4E10 epitopes, natural immune mimicry is rare only for the I595F effect. Thus, it seems that in addition to restricting AI resistance development, incorporation of I595F into an appropriate vehicle could elicit a novel antiviral response to improve vaccine efficacy.


Assuntos
Anticorpos Neutralizantes/imunologia , Farmacorresistência Viral , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Mutação de Sentido Incorreto , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , Inibidores da Fusão de HIV/farmacologia , HIV-1/isolamento & purificação , Humanos , Indóis , Estrutura Molecular , Testes de Neutralização , Piperazinas/farmacologia , Ácido Pirúvico
5.
J Med Chem ; 52(23): 7778-87, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19769332

RESUMO

Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Indóis/química , Piperazinas/farmacologia , Ligação Viral/efeitos dos fármacos , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular , Descoberta de Drogas , Humanos , Modelos Moleculares , Conformação Molecular , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Ácido Pirúvico , Ratos , Reprodutibilidade dos Testes
6.
J Virol ; 80(8): 4017-25, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16571818

RESUMO

BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.


Assuntos
Fármacos Anti-HIV/farmacologia , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/química , HIV-1/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/efeitos dos fármacos , Células HeLa , Humanos , Indóis , Piperazinas/farmacologia , Conformação Proteica , Ácido Pirúvico , Vírion/efeitos dos fármacos
7.
J Virol ; 77(19): 10528-36, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12970437

RESUMO

BMS-378806 is a recently discovered small-molecule human immunodeficiency virus type 1 (HIV-1) attachment inhibitor with good antiviral activity and pharmacokinetic properties. Here, we demonstrate that the compound targets viral entry by inhibiting the binding of the HIV-1 envelope gp120 protein to cellular CD4 receptors via a specific and competitive mechanism. BMS-378806 binds directly to gp120 at a stoichiometry of approximately 1:1, with a binding affinity similar to that of soluble CD4. The potential BMS-378806 target site was localized to a specific region within the CD4 binding pocket of gp120 by using HIV-1 gp120 variants carrying either compound-selected resistant substitutions or gp120-CD4 contact site mutations. Mapping of resistance substitutions to the HIV-1 envelope, and the lack of compound activity against a CD4-independent viral infection confirm the gp120-CD4 interactions as the target in infected cells. BMS-378806 therefore serves as a prototype for this new class of antiretroviral agents and validates gp120 as a viable target for small-molecule inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Piperazinas/farmacologia , Animais , Fármacos Anti-HIV/metabolismo , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Cricetinae , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...