Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995687

RESUMO

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Assuntos
Retrovirus Endógenos , Retrovirus Endógenos/genética , RNA Nuclear , Epigênese Genética , Heterocromatina , Expressão Gênica
2.
Cell Host Microbe ; 31(7): 1154-1169.e10, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339625

RESUMO

Targeted protein degradation (TPD), as exemplified by proteolysis-targeting chimera (PROTAC), is an emerging drug discovery platform. PROTAC molecules, which typically contain a target protein ligand linked to an E3 ligase ligand, recruit a target protein to the E3 ligase to induce its ubiquitination and degradation. Here, we applied PROTAC approaches to develop broad-spectrum antivirals targeting key host factors for many viruses and virus-specific antivirals targeting unique viral proteins. For host-directed antivirals, we identified a small-molecule degrader, FM-74-103, that elicits selective degradation of human GSPT1, a translation termination factor. FM-74-103-mediated GSPT1 degradation inhibits both RNA and DNA viruses. Among virus-specific antivirals, we developed viral RNA oligonucleotide-based bifunctional molecules (Destroyers). As a proof of principle, RNA mimics of viral promoter sequences were used as heterobifunctional molecules to recruit and target influenza viral polymerase for degradation. This work highlights the broad utility of TPD to rationally design and develop next-generation antivirals.


Assuntos
Antivirais , Vírus , Humanos , Antivirais/farmacologia , Proteólise , RNA Viral/metabolismo , Ligantes , Vírus/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Proteínas de Transporte/metabolismo
3.
Nature ; 593(7859): 362-371, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34012080

RESUMO

Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Viroses/tratamento farmacológico , Viroses/virologia , Animais , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Mudança da Fase de Leitura do Gene Ribossômico/genética , Regulação Viral da Expressão Gênica/genética , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Humanos , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética
4.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970190

RESUMO

DNMT3A encodes an enzyme that carries out de novo DNA methylation, which is essential for the acquisition of cellular identity and specialized functions during cellular differentiation. DNMT3A is the most frequently mutated gene in age-related clonal hematopoiesis. As such, mature immune cells harboring DNMT3A mutations can be readily detected in elderly persons. Most DNMT3A mutations associated with clonal hematopoiesis are heterozygous and predicted to cause loss of function, indicating that haploinsufficiency is the predominant pathogenic mechanism. Yet, the impact of DNMT3A haploinsufficiency on the function of mature immune cells is poorly understood. Here, we demonstrate that DNMT3A haploinsufficiency impairs the gain of DNA methylation at decommissioned enhancers, while simultaneously and unexpectedly impairing DNA demethylation of newly activated enhancers in mature human myeloid cells. The DNA methylation defects alter the activity of affected enhancers, leading to abnormal gene expression and impaired immune response. These findings provide insights into the mechanism of immune dysfunction associated with clonal hematopoiesis and acquired DNMT3A mutations.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Haploinsuficiência/genética , Sistema Imunitário/imunologia , Sequências Reguladoras de Ácido Nucleico/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/imunologia , Metilação de DNA/imunologia , DNA Metiltransferase 3A , Expressão Gênica/genética , Expressão Gênica/imunologia , Haploinsuficiência/imunologia , Humanos , Mutação/genética , Mutação/imunologia , Sequências Reguladoras de Ácido Nucleico/imunologia
5.
Cell ; 184(10): 2618-2632.e17, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33836156

RESUMO

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.


Assuntos
Tratamento Farmacológico da COVID-19 , DNA Topoisomerases Tipo I/metabolismo , SARS-CoV-2/metabolismo , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Animais , COVID-19/enzimologia , COVID-19/patologia , Chlorocebus aethiops , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/patologia , Inflamação/virologia , Mesocricetus , Camundongos , Camundongos Transgênicos , Células THP-1 , Células Vero
6.
Sci Adv ; 6(35): eaaz4551, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923617

RESUMO

Recently, covalent modifications of RNA, such as methylation, have emerged as key regulators of all aspects of RNA biology and have been implicated in numerous diseases, for instance, cancer. Here, we undertook a combination of in vitro and in vivo screens to test 78 potential methyltransferases for their roles in hepatocellular carcinoma (HCC) cell proliferation. We identified methyltransferase-like protein 6 (METTL6) as a crucial regulator of tumor cell growth. We show that METTL6 is a bona fide transfer RNA (tRNA) methyltransferase, catalyzing the formation of 3-methylcytidine at C32 of specific serine tRNA isoacceptors. Deletion of Mettl6 in mouse stem cells results in changes in ribosome occupancy and RNA levels, as well as impaired pluripotency. In mice, Mettl6 knockout results in reduced energy expenditure. We reveal a previously unknown pathway in the maintenance of translation efficiency with a role in maintaining stem cell self-renewal, as well as impacting tumor cell growth profoundly.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Proliferação de Células , Neoplasias Hepáticas/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases
7.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32559462

RESUMO

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Assuntos
Capuzes de RNA/genética , Infecções por Vírus de RNA/genética , Proteínas Recombinantes de Fusão/genética , Regiões 5' não Traduzidas/genética , Animais , Bovinos , Linhagem Celular , Cricetinae , Cães , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Fases de Leitura Aberta/genética , Capuzes de RNA/metabolismo , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
8.
Nat Commun ; 10(1): 5759, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848333

RESUMO

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Sondas Moleculares/farmacologia , Cristalografia por Raios X , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/ultraestrutura , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Domínios Proteicos , S-Adenosilmetionina/metabolismo
9.
Nat Struct Mol Biol ; 25(9): 885-893, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30177761

RESUMO

Viral infection perturbs host cells and can be used to uncover regulatory mechanisms controlling cellular responses and susceptibility to infections. Using cell biological, biochemical, and genetic tools, we reveal that influenza A virus (IAV) infection induces global transcriptional defects at the 3' ends of active host genes and RNA polymerase II (RNAPII) run-through into extragenic regions. Deregulated RNAPII leads to expression of aberrant RNAs (3' extensions and host-gene fusions) that ultimately cause global transcriptional downregulation of physiological transcripts, an effect influencing antiviral response and virulence. This phenomenon occurs with multiple strains of IAV, is dependent on influenza NS1 protein, and can be modulated by SUMOylation of an intrinsically disordered region (IDR) of NS1 expressed by the 1918 pandemic IAV strain. Our data identify a strategy used by IAV to suppress host gene expression and indicate that polymorphisms in IDRs of viral proteins can affect the outcome of an infection.


Assuntos
Influenza Humana/genética , RNA Polimerase II/genética , Regiões Terminadoras Genéticas/genética , Humanos , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Virulência
10.
Science ; 352(6289): aad7993, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27127234

RESUMO

The host innate immune response is the first line of defense against pathogens and is orchestrated by the concerted expression of genes induced by microbial stimuli. Deregulated expression of these genes is linked to the initiation and progression of diseases associated with exacerbated inflammation. We identified topoisomerase 1 (Top1) as a positive regulator of RNA polymerase II transcriptional activity at pathogen-induced genes. Depletion or chemical inhibition of Top1 suppresses the host response against influenza and Ebola viruses as well as bacterial products. Therapeutic pharmacological inhibition of Top1 protected mice from death in experimental models of lethal inflammation. Our results indicate that Top1 inhibition could be used as therapy against life-threatening infections characterized by an acutely exacerbated immune response.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inibidores da Topoisomerase I/uso terapêutico , Transcrição Gênica/efeitos dos fármacos , Animais , Azepinas/farmacologia , Azepinas/uso terapêutico , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Ebolavirus , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imunidade Inata , Inflamação/microbiologia , Vírus da Influenza A , Interferon beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , RNA Polimerase II/metabolismo , Vírus Sendai , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Inibidores da Topoisomerase I/farmacologia , Topotecan/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico
11.
Nat Immunol ; 16(5): 485-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822250

RESUMO

The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.


Assuntos
Esclerose Lateral Amiotrófica/genética , Influenza Humana/imunologia , Orthomyxoviridae/fisiologia , RNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Degenerações Espinocerebelares/genética , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , DNA Helicases , Cães , Regulação para Baixo , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Análise em Microsséries , Enzimas Multifuncionais , RNA Helicases/genética , RNA Polimerase II/genética , RNA Interferente Pequeno/genética , Ataxias Espinocerebelares/congênito , Células Vero , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...