Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav ; 2(4): 468-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22950050

RESUMO

Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.

2.
J Neuroinflammation ; 7: 50, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20822515

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorders (NMOSD) are severe central nervous system inflammatory demyelinating disorders (CNS IDD) characterized by monophasic or relapsing, longitudinally extensive transverse myelitis (LETM) and/or optic neuritis (ON). A significant proportion of NMOSD patients are seropositive for aquaporin-4 (AQP4) autoantibodies. We compared the AQP4 autoantibody detection rates of tissue-based indirect immunofluorescence assay (IIFA) and cell-based IIFA. METHODS: Serum of Chinese CNS IDD patients were assayed for AQP4 autoantibodies by tissue-based IIFA using monkey cerebellum and cell-based IIFA using transfected HEK293 cells which express human AQP4 on their cell membranes. RESULTS: In total, 128 CNS IDD patients were studied. We found that 78% of NMO patients were seropositive for AQP4 autoantibodies by cell-based IIFA versus 61% by tissue-based IFA (p = 0.250), 75% of patients having relapsing myelitis (RM) with LETM were seropositive by cell-based IIFA versus 50% by tissue-based IIFA (p = 0.250), and 33% of relapsing ON patients were seropositive by cell-based IIFA versus 22% by tissue-based IIFA (p = 1.000); however the differences were not statistically significant. All patients seropositive by tissue-based IIFA were also seropositive for AQP4 autoantibodies by cell-based IIFA. Among 29 NMOSD patients seropositive for AQP4 autoantibodies by cell-based IIFA, 20 (69%) were seropositive by tissue-based IIFA. The 9 patients seropositive by cell-based IIFA while seronegative by tissue-based IIFA had NMO (3), RM with LETM (3), a single attack of LETM (1), relapsing ON (1) and a single ON attack (1). Among 23 NMO or RM patients seropositive for AQP4 autoantibodies by cell-based IIFA, comparison between those seropositive (n = 17) and seronegative (n = 6) by tissue-based IIFA revealed no differences in clinical and neuroradiological characteristics between the two groups. CONCLUSION: Cell-based IIFA is slightly more sensitive than tissue-based IIFA in detection of AQP4 autoantibodies, which are highly specific for NMOSD.


Assuntos
Aquaporina 4/imunologia , Autoanticorpos/análise , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Técnica Indireta de Fluorescência para Anticorpo/métodos , Adolescente , Adulto , Idoso , Autoanticorpos/imunologia , Western Blotting , Distribuição de Qui-Quadrado , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...