Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(39): 26191-7, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26381105

RESUMO

By means of calculations based on density-functional theory (DFT), we have investigated the conversion of methane on two platinum atoms supported with a graphene-oxide sheet (Pt2/GO). In our calculations, a CH4 molecule can be adsorbed around the Pt atoms of the Pt2/GO sheet with adsorption energies within -0.11 to -0.53 eV; an elongated C-H bond indicates that Pt atoms on that sheet can activate the C-H bond of a CH4 molecule. The role of the GO sheet in the activation of CH4 was identified according to an analysis of the electronic density: the GO sheet induces the d-band of Pt atoms to generate several specific dz(2) state features above the Fermi level, which enabled the activation of the C-H bond of CH4 in generating an evident area of overlap with the hydrogen s orbital of the C-H bond. Upon a dioxygen molecule being added onto the Pt2/GO sheet, this molecule can react with activated CH4 according to mechanisms of form 2CH4 + O2 [Pt2/GO]--> 2CH3OH, and restore the original Pt2/GO sheet.

2.
Phys Chem Chem Phys ; 17(16): 11028-35, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25825271

RESUMO

The catalytic activity of rhodium nanoclusters (Rh13) on unzipped graphene oxide (Rh13/UGO) has been investigated for comparison with Rh13 nanoclusters and Rh(111) surfaces. The binding energy of Rh atoms on UGO is less than the cohesive energy (-5.75 eV) of bulk Rh, indicating that the Rh atoms adsorbed on UGO tend to collect into clusters. We systematically calculated the adsorption energies of CO2 on Rh13 nanoclusters in various stable shapes on unzipped graphene oxide; Rh13-Ih/UGO had the highest energy (where the Ih represents icosahedral shape), -1.18 eV, with the C-O bond being elongated from 1.17 to 1.29 Å; the barrier to dissociation of CO2 on Rh13-Ih/UGO is, accordingly, the smallest (Ea = 0.45 eV), indicating that Rh13-Ih/UGO might act as an effective material to adsorb and activate the scission of the C-O bond of CO2. The calculated data required to support all evidence of this result, including the electronic distribution and the density of states, are provided.

3.
Phys Chem Chem Phys ; 17(11): 7555-63, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25707988

RESUMO

Nickel or nickel hydroxide clusters and graphene oxide (GO) composites are novel nanomaterials in the application of electrochemical catalysts. In this work, we calculated the energy of Ni4 adsorbed onto saturated hydroxyl graphene oxide (hGO), which forms a Ni4(OH)3 cluster on the hydroxyl graphene oxide (Ni4(OH)3-hGO) and releases 4.47 eV (5.22 eV with DFT-D3 correction). We subsequently studied the oxidation of CO on the Ni4(OH)3-hGO system via three mechanisms - LH, ER and carbonated mechanisms. Our results show that the activation energy for oxidation of the first CO molecule according to the ER mechanism is 0.14 eV (0.12 eV with DFT-D3 correction), much smaller than that with LH (Ea = 0.65 eV, 0.61 eV with DFT-D3 correction) and with carbonated (Ea = 1.28 eV, 1.20 eV with DFT-D3 correction) mechanisms. The barrier to oxidation of the second CO molecule to CO2 with the ER mechanism increases to 0.43 eV (0.37 eV with DFT-D3 correction), but still less than that via LH (Ea = 1.09 eV, 1.07 eV with DFT-D3 correction), indicating that CO could be effectively oxidized through the ER mechanism on the Ni4(OH)3/hGO catalyst.


Assuntos
Monóxido de Carbono/química , Grafite/química , Hidróxidos/química , Níquel/química , Teoria Quântica , Modelos Moleculares , Conformação Molecular , Oxirredução , Termodinâmica
4.
Phys Chem Chem Phys ; 16(16): 7394-400, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24622677

RESUMO

The N2 bond cleavage is the rate-limiting step in the synthesis of ammonia, and ruthenium is a catalyst well known for this reaction. The double-icosahedral (D5h) Ru19 cluster is famous as an active catalyst, and has a remarkable stability towards the adsorption of H2, N2 and CO. Using first-principles calculations, we have investigated the adsorption and dissociation of dinitrogen on a double-icosahedral Ru19 cluster. Our results show that the hollow site in the rhombus region (BHB site) of the Ru19 cluster possesses the greatest catalytic activity to dissociate N2, with the reaction barrier of 0.89 eV and an exothermicity of -1.45 eV. Multiple coadsorption of N2 on the cluster (i.e. coadsorption of 2N2 and 3N2 on a single Ru19 cluster) causes the barrier to dissociate N2 to be less on a BHB site than for adsorption of a single N2. To understand the catalytic properties of a Ru19 cluster towards N2 bond cleavage, we calculated the electron population, vibrational wavenumbers and local densities of states; the results are explicable.

5.
Phys Chem Chem Phys ; 16(11): 5393-8, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24499741

RESUMO

We applied density-functional theory (DFT) to investigate the adsorption and dissociation of NO on Rh19 and Ni19 clusters with a double-icosahedral (DI) structure. The transition structures of the NO dissociating on the potential-energy surfaces were derived using the nudged-elastic-band (NEB) method. The adsorption energies of NO molecules on the rhombus-center region of DI clusters are -2.53 eV and -2.78 eV with the N-O bond elongated to 1.33 Å and 1.35 Å, respectively, on Ni19 and Rh19, compared to 1.16 Å of the gaseous NO counterpart. The barriers to dissociation of N-O on both DI-Rh19 (Ea = 0.24 eV) and DI-Ni19 (Ea = 0.42 eV) clusters are small, indicating that the rhombus-center region of DI metal clusters might activate the scission of the N-O bond. To understand the interaction between these nanocluster catalysts and their adsorbates, we calculated the electronic properties including the local densities of states, orbital evolution of the adsorbates and interaction energies; the results indicate that a profound catalytic behavior for bond scission is observed in this unique rhombus-center region of DI metal-nanoclusters.

6.
Phys Chem Chem Phys ; 15(25): 10395-401, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23680803

RESUMO

We applied density-functional theory (DFT) with the projector-augmented-wave method (PAW) to investigate systematically the energetics of C-N coupling reactions on Pt(111) and Ni(111)surfaces. Our approach includes several steps: the adsorption of reactants and products (CHx, NHy and CHxNHy, x = 0-3, y = 0-2), movement of molecular fragments on the surface, and then C-N coupling. According to our calculations, the energies (ignoring the conventional negative sign) of adsorption of CHx and NHy on Pt(111)/Ni(111) surfaces decrease in the order C > CH > CH2 > CH3 and N > NH > NH2, with values 7.41/6.91, 6.97/6.52, 4.58/4.39, 2.19/2.01 eV and 5.10/5.49, 4.12/4.79, 2.75/2.87 eV, respectively. Regarding the adsorption energies among CHxNHy, the adsorption energy of CNH2 species is the highest on the Pt(111) surface, whereas on the Ni(111) surface CH3N is the most stable. The C-N coupling barriers differ on the two metallic surfaces despite the structures of initial, transition and final states being similar. On the Pt(111) surface, the coupling reaction of CH2 + NH2 has the smallest barrier, whereas CH + NH2 is the most favorable on the Ni(111) surface. The detailed local density of states (LDOS) and electron-localization functions (ELF) were investigated to rationalize the calculated outcomes.

7.
Chemphyschem ; 13(13): 3194-203, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22740096

RESUMO

Sulfur, a pollutant known to poison fuel-cell electrodes, generally comes from S-containing species such as hydrogen sulfide (H(2)S). The S-containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O(2) into gaseous SO(2). According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO(2) are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO(2) formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO(2) desorption at either room temperature or high temperatures.

8.
Phys Chem Chem Phys ; 13(45): 20393-400, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21997476

RESUMO

The Cu/TiO(2)(110) surface displays a great catalytic activity toward the water-gas shift reaction (WGSR), for which Cu is considered to be the most active metal on a TiO(2)(110)-supported surface. Experiments revealed that Cu nanoparticles bind preferentially to the terrace and steps of the TiO(2)(110) surface, which would not only affect the growth mode of the surface cluster but also enhance the catalytic activity, unlike Au nanoparticles for which occupancy of surface vacancies is favored, resulting in poorer catalytic performance than Cu. With density-functional theory we calculated some possible potential-energy surfaces for the carboxyl and redox mechanisms of the WGSR at the interface between the Cu cluster and the TiO(2) support. Our results show that the redox mechanism would be the dominant path; the resident Cu clusters greatly diminish the barrier for CO oxidation (22.49 and 108.68 kJ mol(-1), with and without Cu clusters, respectively). When adsorbed CO is catalytically oxidized by the bridging oxygen of the Cu/TiO(2)(110) surface to form CO(2), the release of CO(2) from the surface would result in the formation of an oxygen vacancy on the surface to facilitate the ensuing water splitting (barrier 34.90 vs. 50.49 kJ mol(-1), with and without the aid of a surface vacancy).

9.
Phys Chem Chem Phys ; 12(41): 13707-14, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20862431

RESUMO

We applied periodic density-functional theory to investigate the interaction of NO(x) on Ni(111) surface for small and large coverages. For a small coverage, adsorbed species, such as NO, N(2)O and NO(2), tend to dissociate to form atomic N and atomic O on the surface, but a large barrier, 2.34 eV, hinders the recombination of adsorbed N to form N(2). At a large coverage, the recombination of N and NO to form N(2)O is favorable; this species might either desorb or break the N-O bond to form N(2). Our calculated results agree satisfactorily with experimental observations. The formation of N(2)via paths that vary with coverage is analyzed and discussed.

10.
Langmuir ; 26(2): 775-81, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19715337

RESUMO

Spin-polarized density functional theory calculation was carried out to characterize the adsorption and dissociation of CO(2) molecule on the Fe(111) surface. It was shown that the barriers for the stepwise CO(2) dissociation reaction, CO(2(g)) --> C(a) + 2O(a), are 21.73 kcal/mol (for OC-O bond activation) and 23.87 kcal/mol (for C-O bond activation), and the entire process is 35.73 kcal/mol exothermic. The rate constants for the dissociative adsorption of CO(2) have been predicted with variational RRKM theory, and the predicted rate constants, k(CO(2)) (in units of cm(3) molecule(-1) s(-1)), can be represented by the equations 2.12 x 10(-8)T(-0.842) exp(-0.258 kcal mol(-1)/RT) at T = 100-1000 K. To gain insights into high catalytic activity of the Fe(111) surface, the interaction nature between adsorbate and substrate is also analyzed by the detailed electronic analysis.

11.
J Org Chem ; 71(26): 9595-601, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17168575

RESUMO

Calculations of the activation energy of cyclization of alpha-sulfenyl-, alpha-sulfinyl-, and alpha-sulfonyl-5-hexenyl radicals and their respective 5-methyl-5-hexenyl counterparts at the G3MP2B3 level agree quite well with experimental data. The alpha-sulfinyl-5-hexenyl radical exhibits unexpected regioselectivity (93.99:6.01) via the 5-exo mode, whereas the alpha-sulfenyl- and alpha-sulfonyl-5-hexenyl radicals show increasing branching ratios of the 6-endo product. In contrast, the cyclization of the alpha-sulfur-based 5-methyl-substituted counterparts yields essentially the 6-endo products in all cases; in particular, the alpha-SO2-5-CH3-5-hexenyl radical gives high regioselectivity (98.85:1.15) via the 6-endo mode. Several other 5-substituted moieties, including the electron-withdrawing (CN and NO2) or electron-donating substituents (NH2), also proceed preferentially to 6-endo closure. The alpha-sulfonyl-5-amine-5-hexenyl radical is calculated to proceed to exclusively the 6-endo product, a demonstration of the high synthetic value of this reactant.


Assuntos
Compostos de Enxofre/síntese química , Ciclização , Radicais Livres/síntese química , Radicais Livres/química , Estrutura Molecular , Estereoisomerismo , Compostos de Enxofre/química
12.
J Phys Chem B ; 110(30): 14816-23, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16869591

RESUMO

We applied periodic density-functional theory (DFT) to investigate the dehydrogenation of ethanol on a Rh/CeO2 (111) surface. Ethanol is calculated to have the greatest energy of adsorption when the oxygen atom of the molecule is adsorbed onto a Ce atom in the surface, relative to other surface atoms (Rh or O). Before forming a six-membered ring of an oxametallacyclic compound (Rh-CH2CH2O-Ce(a)), two hydrogen atoms from ethanol are first eliminated; the barriers for dissociation of the O-H and the beta-carbon (CH2-H) hydrogens are calculated to be 12.00 and 28.57 kcal/mol, respectively. The dehydrogenated H atom has the greatest adsorption energy (E(ads) = 101.59 kcal/mol) when it is adsorbed onto an oxygen atom of the surface. The dehydrogenation continues with the loss of two hydrogens from the alpha-carbon, forming an intermediate species Rh-CH2CO-Ce(a), for which the successive barriers are 34.26 and 40.84 kcal/mol. Scission of the C-C bond occurs at this stage with a dissociation barrier Ea = 49.54 kcal/mol, to form Rh-CH(2(a)) + 4H(a) + CO(g). At high temperatures, these adsorbates desorb to yield the final products CH(4(g)), H(2(g)), and CO(g).

13.
J Phys Chem A ; 110(28): 8893-900, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16836453

RESUMO

The mechanisms of the reaction of H2XN (X = C, Si) with NO were studied at the level CCSD(T)/aug-cc-PVTZ//B3LYP/6-31++G(d,p). The results indicate that there are two most favorable reaction pathways in the reaction H2CN + NO that have similar energy barriers; these two pathways lead to the formation of HCN + HNO (P1) and H2CO + N2 (P3), with the calculated barriers 11.1 and 10.2 kcal/mol, respectively, with respect to the reactants (H2CN + NO). In the reaction H2SiN + NO the difference of the barriers in these two analogous pathways becomes large, and the preferable pathway shifts to the production of H2SiO + N2 (P3s), which has no barrier with respect to the reactants (H2SiN + NO). A direct reduction of NO into a stable and nontoxic nitrogen molecule with no energy input becomes possible. As a consequence, H2SiN might be an effective reagent to convert the reactive and toxic NO into a benign gas N2 in several NO-producing combustion systems. We offer a possible explanation of the differences between H2CN and H2SiN toward NO as well as the calculated potential energies for these reactions.

14.
J Phys Chem A ; 109(11): 2564-71, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16833560

RESUMO

Quantum-chemical calculations were performed on the mechanisms of reaction of NCN with NO and NS. Possible mechanisms were classified according to four pathways yielding products in the following four possible groups: N2O/N2S + CN, N2 + NCO/NCS, N2 + CNO/CNS, and CNN + NO/NS, labeled in order from p1/p1s to p4/p4s. The local structures, transition structures, and potential-energy surfaces with respect to the reaction coordinates are calculated, and the barriers are compared. In the NCN + NO reaction, out of several adduct structures, only the nitroso adduct NCNNO lies lower in energy than the reactants, by 21.89 kcal/mol; that adduct undergoes rapid transformation into the products, in agreement with experimental observation. For the NS counterpart, both thionitroso NCNNS and thiazyl NCNSN adducts have energies much lower than those of the reactants, by 43 and 29 kcal/mol, respectively, and a five-membered-ring NCNNS (having an energy lower than those of the reactants by 36 kcal/mol) acts as a bridge in connecting these two adducts. The net energy barriers leading to product channels other than p4s are negative for the NS reaction, whereas those for the NO analogue are all positive. The channel leading to p1 (N2O + CN) has the lowest energy (3.81 kcal/mol), whereas the channels leading to p2 (N2 + NCO) and p2s (N2 + NCS) are the most exothermic (100.94 and 107.38 kcal/mol, respectively).


Assuntos
Óxido Nítrico/química , Nitrilas/química , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...