Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 224: 115423, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796607

RESUMO

This research assesses the adaptive capacity of farmers in the Vietnamese Mekong Delta's floodplains (VMD) with respect to hydrological changes. Currently, climate change and socio-economic developments induce extreme- and diminishing floods, which in turn increase farmers' vulnerability. This research assesses farmers' adaptive capacity to hydrological changes using two prevalent farming systems: high dykes featuring triple-crop rice farming and low dykes where fields are left fallow during the flood season. We examine (1) farmers' perceptions on a changing flood regime and their current vulnerabilities and (2) farmers' adaptive capacity through five sustainability capitals. Methods include a literature review and qualitative interviews with farmers. Results show that extreme floods are becoming less frequent and damaging, depending on arrival time, depth, residence time, and flow velocity. In extreme floods, farmers' adaptive capacity is generally strong, and only low dyke farmers experience damage. As for diminishing floods, which is an emerging phenomenon, the overall adaptive capacity of farmers is remarkably weaker and varies between high- and low dyke farmers. Financial capital is lower for low dyke farmers due to their double-crop rice system, and natural capital is low for both farmer groups due to a decrease in soil- and water quality, affecting yields and increasing investment costs. Farmers also struggle with an unstable rice market due to strong fluctuating prices for seeds, fertilizers, and other inputs. We conclude that both high- and low dyke farmers have to cope with new challenges, including fluctuating flood patterns and the depletion of natural resources. Increasing farmers resilience should focus on exploring better crop varieties, adjusting crop calendars, and shifting to less water-intensive crops.


Assuntos
Fazendeiros , Oryza , Humanos , População do Sudeste Asiático , Agricultura/métodos , Fazendas , Inundações , Mudança Climática
2.
Environ Monit Assess ; 194(Suppl 2): 771, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255508

RESUMO

Despite the importance of transboundary water management, cooperation mechanisms are limited, especially in the case of Mekong River basin where environmental and social aspects are threatened by recent anthropogenic pressures like hydropower development. Existing transboundary mechanism such as the Mekong River Commission (MRC) is challenged to facilitate the cooperation between riparian states. An epistemic community (EC) is considered to effectively influence international governance and is studied as part of transboundary river regimes. The existence of an MRC EC is part of that regime but understanding about its characteristics is yet limited. This research aims to fill in the gap by unraveling the main features of the EC in relation to hydropower development. We analyze shared causal beliefs and policy goals that developed in the EC framework of Haas applying literature review and semi-structured interviews of experts. Results show that the community experts share causal beliefs and policy goals only to a limited extent while disagreeing on many aspects. It resembles a "disciplined" or "professional" group rather than an EC. This suggests that the knowledge factor has not gained proper influence and attention in the region, resulting in incoherent policy advice leading to policymakers developing policies based on incomplete and fragmented knowledge. The role of the MRC in the decision-making process could become more relevant if it would facilitate the development of an EC. Bringing key stakeholders including policymakers and experts into a platform where policy goals and causal beliefs are facilitated to reach possible consensus is recommended. Narrowing the science-policy gap while acknowledging differences in interests and policy objectives is crucial to reach a sustainable transboundary management of the Mekong River given its rapid development, especially on hydropower.


Assuntos
Monitoramento Ambiental , Rios , Água
3.
Environ Sci Pollut Res Int ; 29(6): 8996-9010, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34498189

RESUMO

Groundwater salinization is one of the most severe environmental problems in coastal aquifers worldwide, causing exceeding salinity in groundwater supply systems for many purposes. High salinity concentration in groundwater can be detected several kilometers inland and may result in an increased risk for coastal water supply systems and human health problems. This study investigates the impacts of groundwater pumping practices and regional groundwater flow dynamics on groundwater flow and salinity intrusion in the coastal aquifers of the Vietnamese Mekong Delta using the SEAWAT model-a variable-density groundwater flow and solute transport model. The model was constructed in three dimensions (3D) and accounted for multi-aquifers, variation of groundwater levels in neighboring areas, pumping, and paleo-salinity. Model calibration was carried for 13 years (2000 to 2012), and validation was conducted for 4 years (2013 to 2016). The best-calibrated model was used to develop prediction models for the next 14 years (2017 to 2030). Six future scenarios were introduced based on pumping rates and regional groundwater levels. Modeling results revealed that groundwater pumping activities and variation of regional groundwater flow systems strongly influence groundwater level depletion and saline movement from upper layers to lower layers. High salinity (>2.0 g/L) was expected to expand downward up to 150 m in depth and 2000 m toward surrounding areas in the next 14 years under increasing groundwater pumping capacity. A slight recovery in water level was also observed with decreasing groundwater exploitation. The reduction in the pumping rate from both local and regional scales will be necessary to recover groundwater levels and protect fresh aquifers from expanding paleo-saline in groundwater.


Assuntos
Água Subterrânea , Salinidade , Humanos , Vietnã , Movimentos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...