Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 19(7): 1653-1665, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33773040

RESUMO

BACKGROUND: Elucidating the molecular pathogenesis underlying East Texas bleeding disorder (ET) led to the discovery of alternatively spliced F5 transcripts harboring large deletions within exon 13. These alternatively spliced transcripts produce a shortened form of coagulation factor V (FV) in which a large portion of its B-domain is deleted. These FV isoforms bind tissue factor pathway inhibitor alpha (TFPIα) with high affinity, prolonging its circulatory half-life and enhancing its anticoagulant effects. While two missense pathogenic variants highlighted this alternative splicing event, similar internally deleted FV proteins are found in healthy controls. OBJECTIVE: We identified a novel heterozygous 832 base pair deletion within F5 exon 13, termed F5-Atlanta (F5-ATL), in a patient with severe bleeding. Our objective is to investigate the effect of this deletion on F5 and FV expression. METHODS & RESULTS: Assessment of patient plasma revealed markedly elevated levels of total and free TFPI and a FV isoform similar in size to the FV-short described in ET. Sequencing analyses of cDNA revealed the presence of a transcript alternatively spliced using the ET splice sites, thereby removing the F5-ATL deletion. This alternative splicing pattern was recapitulated by heterologous expression in mammalian cells. CONCLUSIONS: These findings support a mechanistic model consisting of cis-acting regulatory sequences encoded within F5 exon 13 that control alternative splicing at the ET splice sites and thereby regulate circulating FV-short and TFPIα levels.


Assuntos
Transtornos da Coagulação Sanguínea , Fator V , Processamento Alternativo , Animais , Transtornos da Coagulação Sanguínea/genética , Éxons , Fator V/genética , Humanos , Mutação , Splicing de RNA
2.
Nat Biotechnol ; 36(7): 606-613, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29863725

RESUMO

Unfractionated heparin (UFH), the standard anticoagulant for cardiopulmonary bypass (CPB) surgery, carries a risk of post-operative bleeding and is potentially harmful in patients with heparin-induced thrombocytopenia-associated antibodies. To improve the activity of an alternative anticoagulant, the RNA aptamer 11F7t, we solved X-ray crystal structures of the aptamer bound to factor Xa (FXa). The finding that 11F7t did not bind the catalytic site suggested that it could complement small-molecule FXa inhibitors. We demonstrate that combinations of 11F7t and catalytic-site FXa inhibitors enhance anticoagulation in purified reaction mixtures and plasma. Aptamer-drug combinations prevented clot formation as effectively as UFH in human blood circulated in an extracorporeal oxygenator circuit that mimicked CPB, while avoiding side effects of UFH. An antidote could promptly neutralize the anticoagulant effects of both FXa inhibitors. Our results suggest that drugs and aptamers with shared targets can be combined to exert more specific and potent effects than either agent alone.


Assuntos
Anticoagulantes/administração & dosagem , Inibidores do Fator Xa/administração & dosagem , Fator Xa/química , Hemorragia Pós-Operatória/tratamento farmacológico , Anticoagulantes/química , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Ponte Cardiopulmonar/efeitos adversos , Cristalografia por Raios X , Combinação de Medicamentos , Fator Xa/genética , Inibidores do Fator Xa/química , Heparina/efeitos adversos , Humanos , Hemorragia Pós-Operatória/genética , Hemorragia Pós-Operatória/patologia , Conformação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...