Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 2(4): 100868, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34647040

RESUMO

The endoplasmic reticulum (ER) stress is defined by the accumulation of unfolded proteins at the ER and perturbation at the ER membrane, known as lipid bilayer stress (LBS). In turn, ER stress triggers the unfolded protein response (UPR) to restore ER homeostasis. Here, we provide a modified protocol based on the synthetic genetic array analysis in Saccharomyces cerevisiae to identify genetic perturbations that induce the UPR by LBS. This method is adaptable to other canonical stress pathways. For complete details on the use and execution of this protocol, please refer to Ho et al. (2020), Jonikas et al. (2009) and Baryshnikova et al. (2010).


Assuntos
Estresse do Retículo Endoplasmático/genética , Bicamadas Lipídicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Resposta a Proteínas não Dobradas/genética , Técnicas Genéticas , Ensaios de Triagem em Larga Escala/métodos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Cell Biol ; 219(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32349127

RESUMO

Membrane integrity at the endoplasmic reticulum (ER) is tightly regulated, and its disturbance is implicated in metabolic diseases. Using an engineered sensor that activates the unfolded protein response (UPR) exclusively when normal ER membrane lipid composition is compromised, we identified pathways beyond lipid metabolism that are necessary to maintain ER integrity in yeast and in C. elegans. To systematically validate yeast mutants that disrupt ER membrane homeostasis, we identified a lipid bilayer stress (LBS) sensor in the UPR transducer protein Ire1, located at the interface of the amphipathic and transmembrane helices. Furthermore, transcriptome and chromatin immunoprecipitation analyses pinpoint the UPR as a broad-spectrum compensatory response wherein LBS and proteotoxic stress deploy divergent transcriptional UPR programs. Together, these findings reveal the UPR program as the sum of two independent stress responses, an insight that could be exploited for future therapeutic intervention.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Bicamadas Lipídicas/química , Glicoproteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas , Animais , Técnicas Biossensoriais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/química , Cromatina/metabolismo , Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , Homeostase/genética , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteína Vermelha Fluorescente
3.
Sci Rep ; 9(1): 8637, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201345

RESUMO

Phospholipid homeostasis in biological membranes is essential to maintain functions of organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to cellular stress responses. However, in most cases, the implication of membrane lipid changes to homeostatic cellular response has not been clearly defined. Previously, we reported that Saccharomyces cerevisiae adapts to lipid bilayer stress by upregulating several protein quality control pathways such as the endoplasmic reticulum-associated degradation (ERAD) pathway and the unfolded protein response (UPR). Surprisingly, we observed certain ER-resident transmembrane proteins, which form part of the UPR programme, to be destabilised under lipid bilayer stress. Among these, the protein translocon subunit Sbh1 was prematurely degraded by membrane stiffening at the ER. Moreover, our findings suggest that the Doa10 complex recognises free Sbh1 that becomes increasingly accessible during lipid bilayer stress, perhaps due to the change in ER membrane properties. Premature removal of key ER-resident transmembrane proteins might be an underlying cause of chronic ER stress as a result of lipid bilayer stress.


Assuntos
Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Bicamadas Lipídicas/metabolismo , Lisina/metabolismo , Fluidez de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Fosfatidilcolinas/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Saccharomyces cerevisiae/metabolismo
4.
J Cell Sci ; 131(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439157

RESUMO

The unfolded protein response (UPR) is classically viewed as a stress response pathway to maintain protein homeostasis at the endoplasmic reticulum (ER). However, it has recently emerged that the UPR can be directly activated by lipid perturbation, independently of misfolded proteins. Comprising primarily phospholipids, sphingolipids and sterols, individual membranes can contain hundreds of distinct lipids. Even with such complexity, lipid distribution in a cell is tightly regulated by mechanisms that remain incompletely understood. It is therefore unsurprising that lipid dysregulation can be a key factor in disease development. Recent advances in analysis of lipids and their regulators have revealed remarkable mechanisms and connections to other cellular pathways including the UPR. In this Review, we summarize the current understanding in UPR transducers functioning as lipid sensors and the interplay between lipid metabolism and ER homeostasis in the context of metabolic diseases. We attempt to provide a framework consisting of a few key principles to integrate the different lines of evidence and explain this rather complicated mechanism.


Assuntos
Metabolismo dos Lipídeos , Doenças Metabólicas/metabolismo , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/metabolismo , Humanos , Lipídeos/química , Fluidez de Membrana
5.
Hum Mol Genet ; 25(15): 3143-3151, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27270414

RESUMO

Age-related maculopathy susceptibility 2 (ARMS2) is a small (11 kDa), primate-specific protein found in the extracellular matrix of the choroid layer in the eye. Variants in the corresponding genetic locus are highly associated with age-related macular degeneration, a leading cause of blindness in the elderly. So far, the physiological function of ARMS2 has remained enigmatic. It has been demonstrated that ARMS2 is a genuine secreted protein devoid of an N-terminal leader sequence, yet the mechanism how it exits the cells and enters the choroidal matrix is not understood. Here, we show that ARMS2 efficiently recruits lectin chaperones from the cytosol and colocalizes with calnexin-positive and protein disulfide isomerase-negative vesicle-like structures. Site-directed mutagenesis revealed critical elements for this interaction. Mutant forms proving unable to interact with the calnexin/calreticulin system failed secretion. On the other hand, blocking the endoplasmic reticulum to Golgi transport with brefeldin A had no effect on ARMS2 secretion. As we found ARMS2 colocalizing with GRASP65, a marker for unconventional protein secretion, autophagic factors are likely to be key in its export. Interleukin-1ß (IL-1ß) is the most established example of secretory autophagy. Co-expression experiments, however, suggest that the transport of ARMS2 is different from that of IL-1ß. In conclusion, in this work we show that ARMS2 is externalized via an unconventional pathway bypassing Golgi. Its intracellular separation from the classical secretion pathway suggests that the maturation of the protein requires a specific biochemical niche and/or may be needed to impede the premature formation of unwanted protein-protein interactions.


Assuntos
Complexo de Golgi/metabolismo , Proteínas/metabolismo , Brefeldina A/farmacologia , Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi , Células HEK293 , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...