Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 19(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29467283

RESUMO

Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat-insulin-promoter-Cre (RIP-Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT Genetic ablation of APPL2 in RIP-Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP-Cre neurons, inactivation of VMH AMPK, or treatment with a ß3-adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP-Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP-Cre neurons, in which the APPL2-AMPK signaling axis is crucial for this defending mechanism to cold and obesity.


Assuntos
Tecido Adiposo Branco/metabolismo , Neurônios/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Sistema Nervoso Simpático/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético , Deleção de Genes , Técnicas de Introdução de Genes , Genótipo , Hipotálamo/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Termogênese
2.
Transl Neurodegener ; 1(1): 3, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-23210978

RESUMO

This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging pathogenic processes involved in Parkinson's disease (PD). Mitochondria provide cellular energy in the form of ATP via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP+; toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can be influenced by nuclear factor kappa-B (NF-κB) signaling pathway specifically in UCP4. Furthermore, we previously reported an interesting link between PD and metabolic processes through the protective effects of leptin (hormone produced by adipocytes) acting via UCP2 against MPP+-induced toxicity. There is increasing evidence that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the progression of this disease.

3.
Brain Behav ; 2(4): 468-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22950050

RESUMO

Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.

4.
J Peripher Nerv Syst ; 14(1): 14-21, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19335535

RESUMO

Charcot-Marie-Tooth (CMT) neuropathy is inherited with genetic and clinical heterogeneity. The X-linked form (CMTX) is linked to mutations in the GJB1 gene. However, the genotype-phenotype correlation between variants in the non-coding region of GJB1 gene and CMTX is unclear. We found two structural variants (-459C>T and -713G>A) in the 5' non-coding region of a transcript (Ref seq ID: NM_000166) of the GJB1 gene and explored its association with CMTX in two Chinese families. All family members who carried the -459C>T variant either were symptomatic or had abnormal electrophysiological studies compatible with CMTX, whereas all the non-symptomatic family members who had normal electrophysiological studies and 10 healthy unrelated controls did not have this variant. The other variant in the 5'-flanking region of the gene was found to be a benign polymorphism, although it had been earlier reported to be associated with CMTX in a Taiwanese family. Secondary structure prediction analysis of mutant mRNA using M fold and RNA structure softwares indicates that the -459C>T mutation may reduce translation efficiency of the GJB1 gene by changing its 5'-untranslated region secondary structure and abolishing the internal ribosome entry site at the initialization of its translation in Schwann cells. Our study can help clarify the causal mutations of CMTX in the non-protein coding region of GJB1.


Assuntos
Regiões 5' não Traduzidas/genética , Doença de Charcot-Marie-Tooth/genética , Conexinas/genética , Saúde da Família , Mutação Puntual/genética , Adolescente , Adulto , Idoso , Povo Asiático/etnologia , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Análise Mutacional de DNA , Eletromiografia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Condução Nervosa/genética , Condução Nervosa/fisiologia , Nervos Periféricos/patologia , Nervos Periféricos/fisiopatologia , Nervos Periféricos/ultraestrutura , Análise de Sequência , Adulto Jovem , Proteína beta-1 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...