Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(5): 2346-2355, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38713172

RESUMO

Dopamine (DA) and serotonin (5-HT) are neurotransmitters that regulate a wide range of physiological and behavioral processes. Monitoring of both neurotransmitters with real-time analysis offers important insight into the mechanisms that shape animal behavior. However, bioelectronic tools to simultaneously monitor DA and 5-HT interactive dynamics in freely moving animals are underdeveloped. This is mainly due to the limited sensor sensitivity with miniaturized electronics. Here, we present a semi-implantable electrochemical device achieved by integrating a multi-surface-modified carbon fiber microelectrode with a miniaturized potentiostat module to detect DA and 5-HT in vivo with high sensitivity and selectivity. Specifically, carbon fiber microelectrodes were modified through electrochemical treatment and surface coatings to improve sensitivity, selectivity, and antifouling properties. A customized, lightweight potentiostat module was developed for untethered electrochemical measurements. Integrated with the microelectrode, the microsystem is compact (2.8 × 2.3 × 2.1 cm) to minimize its impacts on animal behavior and achieved simultaneous detection of DA and 5-HT with sensitivities of 48.4 and 133.0 nA/µM, respectively, within submicromolar ranges. The system was attached to the crayfish dorsal carapace, allowing electrode implantation into the heart of a crayfish to monitor DA and 5-HT dynamics, followed by drug injections. The semi-implantable biosensor system displayed a significant increase in oxidation peak currents after DA and 5-HT injections. The device successfully demonstrated the application for in vivo simultaneous monitoring of DA and 5-HT in the hemolymph (i.e., blood) of freely behaving crayfish underwater, yielding a valuable experimental tool to expand our understanding of the comodulation of DA and 5-HT.


Assuntos
Astacoidea , Dopamina , Técnicas Eletroquímicas , Microeletrodos , Serotonina , Animais , Dopamina/análise , Serotonina/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Tecnologia sem Fio , Fibra de Carbono/química , Técnicas Biossensoriais/métodos
2.
J Physiol ; 595(17): 6065-6076, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28678402

RESUMO

KEY POINTS: The basolateral complex of the amygdala (BLA) receives input from the lateral orbitofrontal cortex (lOFC) for cue-outcome contingencies and the medial prefrontal cortex (mPFC) for emotion control. Here we examined how the mPFC modulates lOFC-BLA information flow. We found that the majority of BLA neurons responsive to lOFC stimulation were also responsive to mPFC stimulation. Activation of the mPFC exerted an inhibitory modulation of the lOFC-BLA pathway, which was reversed with intra-amygdala blockade of GABAergic receptors. mPFC tetanus potentiated the lOFC-BLA pathway, but did not alter its inhibitory modulatory gating. These results show that the mPFC potently inhibits lOFC drive of the BLA in a GABA-dependent manner, which is informative in understanding the normal and potential pathophysiological state of emotion and contingency associations in regulating behaviour. ABSTRACT: Several neocortical projections converge onto the basolateral complex of the amygdala (BLA), including the lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC). Lateral orbitofrontal input to the BLA is important for cue-outcome contingencies, while medial prefrontal input is essential for emotion control. In this study, we examined how the mPFC, specifically the infralimbic division of the mPFC, modulates lOFC-BLA information flow, using combined in vivo extracellular single-unit recordings and pharmacological manipulations in anaesthetized rats. We found that the majority (over 95%) of BLA neurons that responded to lOFC stimulation also responded to mPFC stimulation. Compared to basal condition, pharmacological (N-methyl-d-aspartate) or electrical activation of the mPFC exerted an inhibitory modulation of the lOFC-BLA pathway, which was reversed with intra-amygdala blockade of GABAergic receptors with combined GABAA and GABAB antagonists (bicuculline and saclofen). Moreover, mPFC tetanus potentiated the lOFC-BLA pathway, but mPFC tetanus or low-frequency stimulation did not alter its inhibitory modulatory gating on the lOFC-BLA pathway. These results show that the mPFC potently inhibits lOFC drive of BLA neurons in a GABA-dependent manner. Our result is informative in understanding the normal and potential pathophysiological state of emotion and contingency associations regulating behaviour.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Estimulação Elétrica , Antagonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Masculino , Vias Neurais , Neurônios/fisiologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...