Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(6): 1234-1244, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38240351

RESUMO

Herein we report a method for affording 2-benzyl benzoxazoles from substituted styrenes and 2-nitrophenols. The success of this method relies on the use of simple reagents, namely elemental sulfur and DABCO. A combination of identical reagents was utilized for the annulation of styrenes with N,N-dialkyl-3-nitroanilines to afford 2-benzyl benzothiazoles. Overall, benzoxazoles and benzothiazoles bearing useful functionalities such as halogens, amines, and heterocyclic groups were isolated in moderate to good yields. Our methods are a rare example of divergent transformations of substituted nitroarenes towards 2-benzyl benzoxazoles and benzothiazoles.

2.
Biotechnol Biofuels ; 14(1): 126, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059121

RESUMO

BACKGROUND: ß-Glucosidases are essential for cellulose hydrolysis by catalyzing the final cellulolytic degradation of cello-oligomers and cellobiose to glucose. D2-BGL is a fungal glycoside hydrolase family 3 (GH3) ß-glucosidase isolated from Chaetomella raphigera with high substrate affinity, and is an efficient ß-glucosidase supplement to Trichoderma reesei cellulase mixtures for the saccharification of lignocellulosic biomass. RESULTS: We have carried out error-prone PCR to further increase catalytic efficiency of wild-type (WT) D2-BGL. Three mutants, each with substitution of two amino acids on D2-BGL, exhibited increased activity in a preliminary mutant screening in Saccharomyces cerevisiae. Effects of single amino acid replacements on catalysis efficiency and enzyme production have been investigated by subsequent expression in Pichia pastoris. Substitution F256M resulted in enhancing the tolerance to substrate inhibition and specific activity, and substitution D224G resulted in increasing the production of recombinant enzyme. The best D2-BGL mutant generated, Mut M, was constructed by combining beneficial mutations D224G, F256M and Y260D. Expression of Mut M in Pichia pastoris resulted in 2.7-fold higher production of recombinant protein, higher Vmax and greater substrate inhibition tolerance towards cellobiose relative to wild-type enzyme. Surprisingly, Mut M overexpression induced the ER unfolded protein response to a level lower than that with WT D2 overexpression in P. pastoris. When combined with the T. reesei cellulase preparation Celluclast 1.5L, Mut M hydrolyzed acid-pretreated sugarcane bagasse more efficiently than WT D2. CONCLUSIONS: D2-BGL mutant Mut M was generated successfully by following directed evolution approach. Mut M carries three mutations that are not reported in other directed evolution studies of GH3 ß-glucosidases, and this mutant exhibited greater tolerance to substrate inhibition and higher Vmax than wild-type enzyme. Besides the enhanced specific activity, Mut M also exhibited a higher protein titer than WT D2 when it was overexpressed in P. pastoris. Our study demonstrates that both catalytic efficiency and productivity of a cellulolytic enzyme can be enhanced via protein engineering.

3.
Org Biomol Chem ; 18(29): 5652-5659, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32648870

RESUMO

We report a method for condensation between ortho-phenylenediamines and ortho-hydroxyacetophenones to afford benzofuroquinoxalines. The reactions proceeded in the presence of an elemental sulfur mediator, DABCO base, and DMSO solvent. Functionalities such as nitrile, ester, and halogen groups were compatible. The conditions could be applicable for the synthesis of benzothienoquinoxalines from ortho-chloroacetophenones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...