Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269676

RESUMO

After the implementation of broad vaccination programs, there is an urgent need to understand how the population immunity affects the dynamics of the COVID-19 pandemic in presence of the protection waning and of the emergence of new vari-ants of concern. In the current Omicron wave that is propagating across Europe, assessing the risk of saturation of the healthcare systems is crucial for pandemic management, as it allows us to support the transition towards the endemic course of SARS-CoV-2 and implement more refined mitigation strategies that shield the most vulnerable groups and protect the healthcare systems. We investigated the current pandemic dynamics by means of compartmental models that describe the age-stratified social-mixing, and consider vaccination status, vaccine types, and their waning efficacy. Our goal is to provide insight into the plausible scenarios that are likely to be seen in Switzerland and Germany in the coming weeks and help take informed decisions. Despite the huge numbers of new positive cases, our results suggest that the current wave is unlikely to create an overwhelming health-care demand: owing to the lower hospitalization rate of the novel variant and the effectiveness of the vaccines. Our findings are robust with respect to the plausible variability of the main parameters that govern the severity and the progression of the Omicron infection. In a broader context, our framework can be applied also to future endemic scenarios, offering quantitative support for refined public health interventions in response to recurring COVID-19 waves.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250559

RESUMO

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. We developed three different protein arrays to measure hallmark IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers. Autoantibodies were identified in approximately 50% of patients, but in <15% of healthy controls. When present, autoantibodies largely targeted autoantigens associated with rare disorders such as myositis, systemic sclerosis and CTD overlap syndromes. Anti-nuclear antibodies (ANA) were observed in [~]25% of patients. Patients with autoantibodies tended to demonstrate one or a few specificities whereas ACA were even more prevalent, and patients often had antibodies to multiple cytokines. Rare patients were identified with IgG antibodies against angiotensin converting enzyme-2 (ACE-2). A subset of autoantibodies and ACA developed de novo following SARS-CoV-2 infection while others were transient. Autoantibodies tracked with longitudinal development of IgG antibodies that recognized SARS-CoV-2 structural proteins such as S1, S2, M, N and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. COVID-19 patients with one or more autoantibodies tended to have higher levels of antibodies against SARS-CoV-2 Nonstructural Protein 1 (NSP1) and Methyltransferase (ME). We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...