Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 215(3): 1009-1025, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28617955

RESUMO

While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses.


Assuntos
Brachypodium/citologia , Brachypodium/genética , Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Lignina/metabolismo , Arabidopsis/genética , Bases de Dados Genéticas , Oryza/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Transcriptoma/genética
2.
J Exp Bot ; 67(1): 227-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26433202

RESUMO

Cereal crop by-products are a promising source of renewable raw material for the production of biofuel from lignocellulose. However, their enzymatic conversion to fermentable sugars is detrimentally affected by lignins. Here the characterization of the Brachypodium Bd5139 mutant provided with a single nucleotide mutation in the caffeic acid O-methyltransferase BdCOMT6 gene is reported. This BdCOMT6-deficient mutant displayed a moderately altered lignification in mature stems. The lignin-related BdCOMT6 gene was also found to be expressed in grains, and the alterations of Bd5139 grain lignins were found to mirror nicely those evidenced in stem lignins. The Bd5139 grains displayed similar size and composition to the control. Complementation experiments carried out by introducing the mutated gene into the AtCOMT1-deficient Arabidopsis mutant demonstrated that the mutated BdCOMT6 protein was still functional. Such a moderate down-regulation of lignin-related COMT enzyme reduced the straw recalcitrance to saccharification, without compromising the vegetative or reproductive development of the plant.


Assuntos
Brachypodium/fisiologia , Lignina/genética , Metiltransferases/genética , Proteínas de Plantas/genética , Biocombustíveis/análise , Brachypodium/genética , Parede Celular/química , Grão Comestível/fisiologia , Lignina/metabolismo , Metiltransferases/metabolismo , Mutação , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/fisiologia
3.
PLoS One ; 8(6): e65503, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840336

RESUMO

The new model plant for temperate grasses, Brachypodium distachyon offers great potential as a tool for functional genomics. We have established a sodium azide-induced mutant collection and a TILLING platform, called "BRACHYTIL", for the inbred line Bd21-3. The TILLING collection consists of DNA isolated from 5530 different families. Phenotypes were reported and organized in a phenotypic tree that is freely available online. The tilling platform was validated by the isolation of mutants for seven genes belonging to multigene families of the lignin biosynthesis pathway. In particular, a large allelic series for BdCOMT6, a caffeic acid O-methyl transferase was identified. Some mutants show lower lignin content when compared to wild-type plants as well as a typical decrease of syringyl units, a hallmark of COMT-deficient plants. The mutation rate was estimated at one mutation per 396 kb, or an average of 680 mutations per line. The collection was also used to assess the Genetically Effective Cell Number that was shown to be at least equal to 4 cells in Brachypodium distachyon. The mutant population and the TILLING platform should greatly facilitate functional genomics approaches in this model organism.


Assuntos
Brachypodium/crescimento & desenvolvimento , Genômica/métodos , Mutação , Proteínas de Plantas/genética , Vias Biossintéticas , Brachypodium/genética , Brachypodium/metabolismo , Genoma de Planta , Lignina/metabolismo , Modelos Moleculares , Fenótipo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/química , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...