Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141973, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608777

RESUMO

Pharmaceuticals are progressively employed in both human and veterinary medicine and increasingly recognized as environmental contaminants. This study investigated the occurrence of selected pharmaceuticals in influent and effluent of wastewater treatment plants of 12 hospitals in Hanoi and 3 northern cities of Vietnam during dry and rainy seasons. In addition, environmental risk of pharmaceuticals in both hospital influents and effluents were evaluated based on risk quotients (RQs). Nine selected pharmaceutical compounds including sulfamethoxazole (SMX), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), carbamazepine (CBM), iopromide (IOP), atenolol (ATN), and caffeine (CAF) were frequently detected in most influent and effluent wastewaters of 12 investigated hospitals. Detected compound levels exhibited a wide range, from as low as 1 ng/L for DCF to as high as 61,772 ng/L for ACT. Among these compounds, ACT, CAF, SMX, and IOP were consistently detected at substantial concentrations in both influents and effluents. This investigation also highlighted potential risks posed by SMX, ACT, and CAF residues present in influents and effluents of hospital wastewater treatment plants (WWTPs) to aquatic ecosystem. These finding are expected to provide scientific-based evidence for the development of hospital waste management and environmental management programs in Vietnam.


Assuntos
Monitoramento Ambiental , Hospitais , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Vietnã , Poluentes Químicos da Água/análise , Preparações Farmacêuticas/análise , Medição de Risco , Eliminação de Resíduos Líquidos , Humanos
2.
Environ Sci Pollut Res Int ; 31(17): 26231-26241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494569

RESUMO

Elevated levels of arsenic in crop plants have been found in various regions worldwide, especially where agricultural soils have been affected by arsenic-enriched aquifers and human activities including mining, smelting, and pesticide application. Given the highly toxic nature of arsenic, remediation should be carried out immediately to reduce this potentially toxic element transport from soil to crop plants. This study focused on the utilization of biofertilizer which is a combination of arsenic-accumulating microorganisms and adsorbent (carrier) in order to achieve high efficiency of arsenic immobilization and ability to apply in the field. Thirty-two bacterial strains were isolated from 9 soil samples collected from the Dongjin and Duckum mining areas in Korea using a nutrient medium amended with 2 mM sodium arsenite. Among isolates, strain DE12 identified as Bacillus megaterium exhibited the greatest arsenic accumulation capacity (0.236 mg/g dry biomass) and ability to resist up to 18 mM arsenite. Among the three agricultural waste adsorbents studied, rice straw was proved to have a higher adsorption capacity (0.104 mg/g) than rice husk and corn husk. Therefore, rice straw was chosen to be the carrier to form biofertilizer together with strain DE12. Inoculation of biofertilizer in soil showed a reduction of arsenic content in the edible part of lettuce, water spinach, and sweet basil by 17.5%, 34.1%, and 34,1%, respectively compared to the control group. The use of biofertilizer may open up the potential application in the field for other food plants.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Humanos , Arsênio/análise , Oryza/microbiologia , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...