Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671566

RESUMO

In modern high-intensity ultrafast laser processing, detecting the focal position of the working laser beam, at which the intensity is the highest and the beam diameter is the lowest, and immediately locating the target sample at that point are challenging tasks. A system that allows in-situ real-time focus determination and fabrication using a high-power laser has been in high demand among both engineers and scientists. Conventional techniques require the complicated mathematical theory of wave optics, employing interference as well as diffraction phenomena to detect the focal position; however, these methods are ineffective and expensive for industrial application. Moreover, these techniques could not perform detection and fabrication simultaneously. In this paper, we propose an optical design capable of detecting the focal point and fabricating complex patterns on a planar sample surface simultaneously. In-situ real-time focus detection is performed using a bandpass filter, which only allows for the detection of laser transmission. The technique enables rapid, non-destructive, and precise detection of the focal point. Furthermore, it is sufficiently simple for application in both science and industry for mass production, and it is expected to contribute to the next generation of laser equipment, which can be used to fabricate micro-patterns with high complexity.

2.
Sensors (Basel) ; 17(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29292722

RESUMO

Precise and rapid focus detection is an essential operation in several manufacturing processes employing high-intensity lasers. However, the detection resolution of existing methods is notably low. This paper proposes a technique that provides a rapid-response, high-precision, and high-resolution focus inspection system on the basis of geometrical optics and advanced optical instruments. An ultrafast interface position detector and a single-slit mask are used in the system to precisely signal the focus position with high resolution. The reflected images on the image sensor are of a high quality, and this quality is maintained persistently when the target surface is shifted along the optical axis. The proposed system developed for focus inspection is simple and inexpensive, and is appropriate for practical use in the industrial production of sophisticated structures such as microcircuits and microchips.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...