Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 233: 116497, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356526

RESUMO

Traffic is an important source of air pollution in Vietnamese cities. The spatio-temporal variation of air pollution derived from traffic is poorly understood. Application of dispersion modelling can help but is hindered by the local scarcity of suitable input data. This study fills the data gap, by establishing a framework employing open-access global data to model emission from traffic activities in Hanoi. The outlined methodology explicitly defines road sources, calculates their emission, and employs background pollution profiles from Copernicus Atmospheric Monitoring Service (CAMS) to produce street-scale distribution maps for CO, PM10 and PM2.5. Pollution hotspots are found near major traffic flows with the highest hourly average CO, PM10 and PM2.5 concentrations at 1206, 87.5 and 61.5 µgm-3, respectively. The relationship between concentrations and properties of the road network is assessed. Motorcycles are the main emitters of the traffic sector. Emission from Heavy Good Vehicles dominate during the night, with contribution percentages increase as it gets further away from the city core. Modelled concentrations are underestimated mainly due to low vehicular emission factor. Adjusting emission factors according to vehicle quality in Vietnam greatly improves agreement. The presence of non-traffic emission sources contributes to the model underestimation. Results for comparisons of daily averaged PM values are broadly in agreement between models and observations; however, diurnal patters are skewed. This results partly from the uncertainties linked with background pollution levels from CAMS, and partly from non-traffic sources which are not accounted for here. Further work is needed to assess the use of CAMS's concentrations in Vietnam. Meteorological input contributes to the temporal disagreement between the model and observations. The impact is most noticeable with CO concentrations during morning traffic rush hours. This study recommends approaches to improve input for future model iterations and encourage applications of dispersion modelling studies in similar economic settings.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Vietnã , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Emissões de Veículos/análise , Material Particulado/análise
2.
Bioresour Technol ; 312: 123573, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32470825

RESUMO

For the first time, a novel sponge-based moving bed-anaerobic osmosis membrane bioreactor/membrane distillation (AnOMBR/MD) system using mixed Na3PO4/EDTA-2Na as the draw solution was employed to treat wastewater for enhanced water flux and reduced membrane fouling. Results indicated that the moving sponge-AnOMBR/MD system obtained a stable water flux of 4.01 L/m2 h and less membrane fouling for a period lasting 45 days. Continuous moving sponge around the FO module is the main mechanism for minimizing membrane fouling during the 45-day AnOMBR operation. The proposed system's nutrient removal was almost 100%, thus showing the superiority of simultaneous FO and MD membranes. Nutrient recovery from the MF permeate was best when solution pH was controlled to 9.5, whereby 17.4% (wt/wt) of phosphorus was contained in precipitated components. Moreover, diluted draw solute following AnOMBR was effectively regenerated using the MD process with water flux above 2.48 L/m2 h and salt rejection > 99.99%.


Assuntos
Destilação , Purificação da Água , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Nutrientes , Osmose , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...