Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895407

RESUMO

Chlamydia trachomatis is the most prevalent bacterial sexually transmitted pathogen worldwide. Since chlamydial infection is largely asymptomatic with the potential for serious complications, a preventative vaccine is likely the most viable long-term answer to this public health threat. Cell-free protein synthesis (CFPS) utilizes the cellular protein manufacturing machinery decoupled from the requirement for maintaining cellular viability, offering the potential for flexible, rapid, and de-centralized production of recombinant protein vaccine antigens. Here, we use CFPS to produce the putative chlamydial type three secretion system (T3SS) needle-tip protein, CT584, for use as a vaccine antigen in mouse models. High-speed atomic force microscopy (HS-AFM) imaging and computer simulations confirm that CFPS-produced CT584 retains a native-like structure prior to immunization. Female mice were primed with CT584 adjuvanted with CpG-1826 intranasally (i.n.) or CpG-1826 + Montanide ISA 720 intramuscularly (i.m.), followed four-weeks later by an i.m. boost before respiratory challenge with 104 inclusion forming units (IFU) of Chlamydia muridarum. Immunization with CT584 generated robust antibody responses but weak cell mediated immunity and failed to protect against i.n. challenge as demonstrated by body weight loss, increased lungs' weights and the presence of high numbers of IFUs in the lungs. While CT584 alone may not be the ideal vaccine candidate, the speed and flexibility with which CFPS can be used to produce other potential chlamydial antigens makes it an attractive technique for antigen production.

2.
Vaccines (Basel) ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992088

RESUMO

Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen. The number of chlamydial infections continuous to increase and there is an urgent need for a safe and efficacious vaccine. To assess the ability of the Chlamydia muridarum polymorphic membrane protein G (PmpG) and the plasmid glycoprotein 3 (Pgp3) as single antigens, and in combination with the major outer-membrane protein (MOMP) to induce protection, BALB/c mice were immunized utilizing CpG-1826 and Montanide ISA 720 VG as adjuvants. Following vaccination with MOMP, significant humoral and cell-mediated immune responses were observed, while immunization with PmpG, or Pgp3, elicited weaker immune responses. Weaker immune responses were induced with MOMP+Pgp3 compared with MOMP alone. Following the intranasal challenge with C. muridarum, mice vaccinated with MOMP showed robust protection against body-weight loss, inflammatory responses in the lungs and number of Chlamydia recovered from the lungs. PmpG and Pgp3 elicited weaker protective responses. Mice immunized with MOMP+PmpG, were no better protected than animals vaccinated with MOMP only, while Pgp3 antagonized the protection elicited by MOMP. In conclusion, PmpG and Pgp3 elicited limited protective immune responses in mice against a respiratory challenge with C. muridarum and failed to enhance the protection induced by MOMP alone. The virulence of Pgp3 may result from its antagonistic effect on the immune protection induced by MOMP.

3.
Nat Commun ; 14(1): 464, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709333

RESUMO

Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising technology for the creation of non-infectious, nanoparticle vaccines against diverse pathogens. However, antigen display on OMVs can be difficult to control and highly variable due to bottlenecks in protein expression and localization to the outer membrane of the host cell, especially for bulky and/or complex antigens. Here, we describe a universal approach for avidin-based vaccine antigen crosslinking (AvidVax) whereby biotinylated antigens are linked to the exterior of OMVs whose surfaces are remodeled with multiple copies of a synthetic antigen-binding protein (SNAP) comprised of an outer membrane scaffold protein fused to a biotin-binding protein. We show that SNAP-OMVs can be readily decorated with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, and short peptides. When the resulting OMV formulations are injected in mice, strong antigen-specific antibody responses are observed that depend on the physical coupling between the antigen and SNAP-OMV delivery vehicle. Overall, these results demonstrate AvidVax as a modular platform that enables rapid and simplified assembly of antigen-studded OMVs for application as vaccines against pathogenic threats.


Assuntos
Membrana Externa Bacteriana , Vacinas , Animais , Camundongos , Antígenos , Proteínas de Membrana , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Antígenos de Bactérias , Vacinas Bacterianas
5.
Cell Stem Cell ; 24(3): 390-404.e8, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30713093

RESUMO

Basal tumor propagating cells (TPCs) control squamous cell carcinoma (SCC) growth by self-renewing and differentiating into supra-basal SCC cells, which lack proliferative potential. While transcription factors such as SOX2 and KLF4 can drive these behaviors, their molecular roles and regulatory interactions with each other have remained elusive. Here, we show that PITX1 is specifically expressed in TPCs, where it co-localizes with SOX2 and TRP63 and determines cell fate in mouse and human SCC. Combining gene targeting with chromatin immunoprecipitation sequencing (ChIP-seq) and transcriptomic analyses reveals that PITX1 cooperates with SOX2 and TRP63 to sustain an SCC-specific transcriptional feed-forward circuit that maintains TPC-renewal, while inhibiting KLF4 expression and preventing KLF4-dependent differentiation. Conversely, KLF4 represses PITX1, SOX2, and TRP63 expression to prevent TPC expansion. This bi-stable, multi-input network reveals a molecular framework that explains self-renewal, aberrant differentiation, and SCC growth in mice and humans, providing clues for developing differentiation-inducing therapeutic strategies.


Assuntos
Carcinoma de Células Escamosas/genética , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Box Pareados/genética , Transcrição Gênica , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Nus , Fatores de Transcrição Box Pareados/metabolismo , Células Tumorais Cultivadas
6.
Sci Rep ; 5: 12896, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26274523

RESUMO

Receptor tyrosine kinases (RTKs) play critical roles in physiological and pathological processes, and are important anticancer drug targets. In vitro mechanistic and drug discovery studies of full-length RTKs require protein that is both fully functional and free from contaminating proteins. Here we describe a rapid cell-free and detergent-free co-translation method for producing full-length and functional ERBB2 and EGFR receptor tyrosine kinases supported by water-soluble apolipoprotein A-I based nanolipoprotein particles.


Assuntos
Receptores Proteína Tirosina Quinases/metabolismo , Sistema Livre de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...