Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 376(2126)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29986911

RESUMO

Three-dimensional models of natural geological fold systems established by photogrammetry are quantified in order to constrain the processes responsible for their formation. The folds are treated as nonlinear dynamical systems and the quantification is based on the two features that characterize such systems, namely their multifractal geometry and recurrence quantification. The multifractal spectrum is established using wavelet transforms and the wavelet transform modulus maxima method, the generalized fractal or Renyi dimensions and the Hurst exponents for longitudinal and orthogonal sections of the folds. Recurrence is established through recurrence quantification analysis (RQA). We not only examine natural folds but also compare their signals with synthetic signals comprising periodic patterns with superimposed noise, and quasi-periodic and chaotic signals. These results indicate that the natural fold systems analysed resemble periodic signals with superimposed chaotic signals consistent with the nonlinear dynamical theory of folding. Prediction based on nonlinear dynamics, in this case through RQA, takes into account the full mechanics of the formation of the geological system.This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.

2.
Philos Trans A Math Phys Eng Sci ; 370(1965): 1966-2009, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22431766

RESUMO

Most natural fold systems are not sinusoidal in profile. A widely held view is that such irregularity derives solely from inherited initial geometrical perturbations. Although, undoubtedly, initial perturbations can contribute to irregularity, we explore a different (but complementary) view in which the irregular geometry results from some material or system softening process. This arises because the buckling response of a layer (or layers) embedded in a weaker matrix is controlled in a sensitive manner by the nature of the reaction forces exerted by the deforming matrix on the layer. In many theoretical treatments of the folding problem, this reaction force is assumed to be a linear function of some measure of the deformation or deformation rate. This paper is concerned with the influence of nonlinear reaction forces such as arise from nonlinear elasticity or viscosity. Localized folds arising from nonlinearity form in a fundamentally different way than the Biot wavelength selection process. As a particular example of nonlinear behaviour, we examine the influence of axial plane structures made up of layers of different mineralogy formed by chemical differentiation processes accompanying the deformation; they are referred to as metamorphic layering. The alternating mineralogical composition in the metamorphic layers means that the embedding matrix exerts a reaction force on the folded layers that varies not only with the deflection or the velocity of deflection of the layer, but also in a periodic manner along the length of the folded layers. The influence of this spatially periodic reaction force on the development of localized and chaotic folding is explored numerically.

3.
Philos Trans A Math Phys Eng Sci ; 368(1918): 2147-62, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20368238

RESUMO

The minimum-energy method to generate chaotic advection should be to use an irrotational flow. However, irrotational flows have no saddle connections to perturb in order to generate chaotic orbits. To the early work of Jones & Aref (Jones & Aref 1988 Phys. Fluids 31, 469-485 (doi:10.1063/1.866828)) on potential flow chaos, we add periodic reorientation to generate chaotic advection with irrotational experimental flows. Our experimental irrotational flow is a dipole potential flow in a disc-shaped Hele-Shaw cell called the rotated potential mixing flow; it leads to chaotic advection and transport in the disc. We derive an analytical map for the flow. This is a partially open flow, in which parts of the flow remain in the cell forever, and parts of it pass through with residence-time and exit-time distributions that have self-similar features in the control parameter space of the stirring. The theory compares well with the experiment.

6.
Philos Trans A Math Phys Eng Sci ; 368(1910): 53-93, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19948544

RESUMO

A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate.

7.
Philos Trans A Math Phys Eng Sci ; 368(1910): 95-118, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19948545

RESUMO

Naturally, deformed rocks commonly contain crack arrays (joints) forming patterns with systematic relationships to the large-scale deformation. Kinematically, joints can be mode-1, -2 or -3 or combinations of these, but there is no overarching theory for the development of the patterns. We develop a model motivated by dislocation pattern formation in metals. The problem is formulated in one dimension in terms of coupled reaction-diffusion equations, based on computer simulations of crack development in deformed granular media with cohesion. The cracks are treated as interacting defects, and the densities of defects diffuse through the rock mass. Of particular importance is the formation of cracks at high stresses associated with force-chain buckling and variants of this configuration; these cracks play the role of 'inhibitors' in reaction-diffusion relationships. Cracks forming at lower stresses act as relatively mobile defects. Patterns of localized deformation result from (i) competition between the growth of the density of 'mobile' defects and the inhibition of these defects by crack configurations forming at high stress and (ii) the diffusion of damage arising from these two populations each characterized by a different diffusion coefficient. The extension of this work to two and three dimensions is discussed.

8.
Philos Trans A Math Phys Eng Sci ; 368(1910): 217-30, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19948552

RESUMO

In nature, dissipative fluxes of fluid, heat and/or reacting species couple to each other and may also couple to deformation of a surrounding porous matrix. We use the well-known analogy of Hele-Shaw flow to Darcy flow to make a model porous medium with porosity proportional to local cell height. Time- and space-varying fluid injection from multiple source/sink wells lets us create many different kinds of chaotic flows and chemical concentration patterns. Results of an initial time-dependent potential flow model illustrate that this is a partially open flow, in which parts of the material transported by the flow remain in the cell forever and parts pass through with residence time and exit time distributions that have self-similar features in the control parameter space of the stirring. We derive analytically the existence boundary in stirring control parameter space between where isolated fluid regions can and cannot remain forever in the open flow. Experiments confirm the predictions.


Assuntos
Hidrodinâmica , Modelos Teóricos , Dinâmica não Linear , Porosidade , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...