Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 142-147, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935515

RESUMO

Pseudoalteromonas fuliginea sp. PS47 is a recently identified marine bacterium that has extensive enzymatic machinery to metabolize polysaccharides, including a locus that targets pectin-like substrates. This locus contains a gene (locus tag EU509_03255) that encodes a pectin-degrading lyase, called PfPL1, that belongs to polysaccharide lyase family 1 (PL1). The 2.2 Šresolution X-ray crystal structure of PfPL1 reveals the compact parallel ß-helix fold of the PL1 family. The back side of the core parallel ß-helix opposite to the active site is a meandering set of five α-helices joined by lengthy loops. A comparison of the active site with those of other PL1 enzymes suggests a catalytic mechanism that is independent of metal ions, such as Ca2+, but that substrate recognition may require metal ions. Overall, this work provides the first structural insight into a pectinase of marine origin and the first structure of a PL1 enzyme in subfamily 2.


Assuntos
Domínio Catalítico , Modelos Moleculares , Polissacarídeo-Liases , Pseudoalteromonas , Pseudoalteromonas/enzimologia , Pseudoalteromonas/genética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Cristalografia por Raios X , Sequência de Aminoácidos , Pectinas/metabolismo , Pectinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Especificidade por Substrato , Conformação Proteica
2.
Methods Mol Biol ; 2657: 215-222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149534

RESUMO

Fluorophore-assisted carbohydrate electrophoresis (FACE) is a method in which a fluorophore is covalently attached to the reducing end of carbohydrates, thereby allowing high-resolution separation by electrophoresis and visualization. This method can be used for carbohydrate profiling and sequencing, as well as for determining the specificity of carbohydrate-active enzymes. Here we describe and demonstrate the use of FACE to separate and visualize the glycans released following digestion of oligosaccharides by glycoside hydrolases (GHs) using two examples: (i) the digestion of chitobiose by the streptococcal ß-hexosaminidase GH20C and (ii) the digestion of glycogen by the GH13 member SpuA.


Assuntos
Oligossacarídeos , Polissacarídeos , Eletroforese em Gel de Poliacrilamida , Polissacarídeos/análise , Oligossacarídeos/análise , Glicogênio , Glicosídeo Hidrolases , Corantes Fluorescentes , Eletroforese/métodos
3.
Antimicrob Agents Chemother ; 66(12): e0093822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36346240

RESUMO

The stringent response (SR) is a universal stress response that acts as a global regulator of bacterial physiology and virulence, and is a contributor to antibiotic tolerance and resistance. In most bacteria, the SR is controlled by a bifunctional enzyme, Rel, which both synthesizes and hydrolyzes the alarmone (p)ppGpp via two distinct catalytic domains. The balance between these antagonistic activities is fine-tuned to the needs of the cell and, in a "relaxed" state, the hydrolase activity of Rel dominates. We have previously shown that two single amino acid substitutions in Rel (that were identified in clinical isolates from persistent infections) confer elevated basal concentrations of (p)ppGpp and consequent multidrug tolerance in Staphylococcus aureus. Here, we explore the molecular details of how these mutations bring about this increase in cellular (p)ppGpp and investigate the wider cellular consequences in terms of resistance expression, resistance development, and bacterial fitness. Using enzyme assays, we show that both these mutations drastically reduce the hydrolase activity of Rel, thereby shifting the balance of Rel activity in favor of (p)ppGpp synthesis. We also demonstrate that these mutations induce high-level, homogeneous expression of ß-lactam resistance and confer a significant fitness advantage in the presence of bactericidal antibiotics (but a fitness cost in the absence of antibiotic). In contrast, these mutations do not appear to accelerate the emergence of endogenous resistance mutations in vitro. Overall, our findings reveal the complex nature of Rel regulation and the multifaceted implications of clinical Rel mutations in terms of antibiotic efficacy and bacteria survival.


Assuntos
Guanosina Pentafosfato , Staphylococcus aureus , Guanosina Pentafosfato/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Bactérias , Hidrolases/genética , Mutação/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligases/genética
4.
Nat Chem Biol ; 18(5): 501-510, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289327

RESUMO

Native porphyran is a hybrid of porphryan and agarose. As a common element of edible seaweed, this algal galactan is a frequent component of the human diet. Bacterial members of the human gut microbiota have acquired polysaccharide utilization loci (PULs) that enable the metabolism of porphyran or agarose. However, the molecular mechanisms that underlie the deconstruction and use of native porphyran remains incompletely defined. Here, we have studied two human gut bacteria, porphyranolytic Bacteroides plebeius and agarolytic Bacteroides uniformis, that target native porphyran. This reveals an exo-based cycle of porphyran depolymerization that incorporates a keystone sulfatase. In both PULs this cycle also works together with a PUL-encoded agarose depolymerizing machinery to synergistically reduce native porphyran to monosaccharides. This provides a framework for understanding the deconstruction of a hybrid algal galactan, and insight into the competitive and/or syntrophic relationship of gut microbiota members that target rare nutrients.


Assuntos
Microbioma Gastrointestinal , Bactérias/metabolismo , Galactanos , Humanos , Polissacarídeos/metabolismo , Sefarose
5.
Artigo em Inglês | MEDLINE | ID: mdl-31871080

RESUMO

Antibiotic tolerance is an underappreciated antibiotic escape strategy that is associated with recurrent and relapsing infections, as well as acting as a precursor to resistance. Tolerance describes the ability of a bacterial population to survive transient exposure to an otherwise lethal concentration of antibiotic without exhibiting an elevated MIC. It is detected in time-kill assays as a lower rate of killing than a susceptible strain and can be quantified by the metric minimum duration for killing (MDK). The molecular mechanisms behind tolerance are varied, but activation of the stringent response (SR) via gene knockouts and/or chemical induction has long been associated with tolerance. More recently, two Gram-positive clinical isolates from persistent bacteremias were found to bear mutations in the SR controller, Rel, that caused elevated levels of the alarmone (p)ppGpp. Here, we show that introduction of either of these mutations into Staphylococcus aureus confers tolerance to five different classes of antibiotic as a result of (p)ppGpp-mediated growth defects (longer lag time and/or lower growth rate). The degree of tolerance is related to the severity of the growth defect and ranges from a 1.5- to 3.1-fold increase in MDK. Two classes of proposed SR inhibitor were unable to reverse or reduce this tolerance. Our findings reveal the significance of SR-activating mutations in terms of tolerance and clinical treatment failures. The panel of strains reported here provide a clinically relevant model of tolerance for further investigation of its link to resistance development, as well as potential validation of high-throughput tolerance screens.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Mutação/genética
6.
Commun Biol ; 2: 474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886414

RESUMO

Pseudoalteromonas is a globally distributed marine-associated genus that can be found in a broad range of aquatic environments, including in association with macroalgal surfaces where they may take advantage of these rich sources of polysaccharides. The metabolic systems that confer the ability to metabolize this abundant form of photosynthetically fixed carbon, however, are not yet fully understood. Through genomics, transcriptomics, microbiology, and specific structure-function studies of pathway components we address the capacity of newly isolated marine pseudoalteromonads to metabolize the red algal galactan carrageenan. The results reveal that the κ/ι-carrageenan specific polysaccharide utilization locus (CarPUL) enables isolates possessing this locus the ability to grow on this substrate. Biochemical and structural analysis of the enzymatic components of the CarPUL promoted the development of a detailed model of the κ/ι-carrageenan metabolic pathway deployed by pseudoalteromonads, thus furthering our understanding of how these microbes have adapted to a unique environmental niche.


Assuntos
Organismos Aquáticos/metabolismo , Carragenina/metabolismo , Redes e Vias Metabólicas , Pseudoalteromonas/metabolismo , Sítios de Ligação , Carragenina/química , Ordem dos Genes , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Fases de Leitura Aberta , Ligação Proteica , Pseudoalteromonas/genética , Relação Estrutura-Atividade
7.
J Biol Chem ; 294(46): 17197-17208, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31591266

RESUMO

Streptococcus pneumoniae is an opportunistic respiratory pathogen that can spread to other body sites, including the ears, brain, and blood. The ability of this bacterium to break down, import, and metabolize a wide range of glycans is key to its virulence. Intriguingly, S. pneumoniae can utilize several plant oligosaccharides for growth in vitro, including raffinose-family oligosaccharides (RFOs, which are α-(1→6)-galactosyl extensions of sucrose). An RFO utilization locus has been identified in the pneumococcal genome; however, none of the proteins encoded by this locus have been biochemically characterized. The enigmatic ability of S. pneumoniae to utilize RFOs has recently received attention because mutations in two of the RFO locus genes have been linked to the tissue tropism of clinical pneumococcal isolates. Here, we use functional studies combined with X-ray crystallography to show that although the pneumococcal RFO locus encodes for all the machinery required for uptake and degradation of RFOs, the individual pathway components are biochemically inefficient. We also demonstrate that the initiating enzyme in this pathway, the α-galactosidase Aga (a family 36 glycoside hydrolase), can cleave α-(1→3)-linked galactose units from a linear blood group antigen. We propose that the pneumococcal RFO pathway is an evolutionary relic that is not utilized in this streptococcal species and, as such, is under no selection pressure to maintain binding affinity and/or catalytic efficiency. We speculate that the apparent contribution of RFO utilization to pneumococcal tissue tropism may, in fact, be due to the essential role the ATPase RafK plays in the transport of other carbohydrates.


Assuntos
Rafinose/metabolismo , Streptococcus pneumoniae/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Loci Gênicos , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Infecções Pneumocócicas/metabolismo , Infecções Pneumocócicas/microbiologia , Rafinose/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
8.
J Biol Chem ; 294(34): 12670-12682, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31266803

RESUMO

An important aspect of the interaction between the opportunistic bacterial pathogen Streptococcus pneumoniae and its human host is its ability to harvest host glycans. The pneumococcus can degrade a variety of complex glycans, including N- and O-linked glycans, glycosaminoglycans, and carbohydrate antigens, an ability that is tightly linked to the virulence of S. pneumoniae Although S. pneumoniae is known to use a sophisticated enzyme machinery to attack the human glycome, how it copes with fucosylated glycans, which are primarily histo-blood group antigens, is largely unknown. Here, we identified two pneumococcal enzymes, SpGH29C and SpGH95C, that target α-(1→3/4) and α-(1→2) fucosidic linkages, respectively. X-ray crystallography studies combined with functional assays revealed that SpGH29C is specific for the LewisA and LewisX antigen motifs and that SpGH95C is specific for the H(O)-antigen motif. Together, these enzymes could defucosylate LewisY and LewisB antigens in a complementary fashion. In vitro reconstruction of glycan degradation cascades disclosed that the individual or combined activities of these enzymes expose the underlying glycan structure, promoting the complete deconstruction of a glycan that would otherwise be resistant to pneumococcal enzymes. These experiments expand our understanding of the extensive capacity of S. pneumoniae to process host glycans and the likely roles of α-fucosidases in this. Overall, given the importance of enzymes that initiate glycan breakdown in pneumococcal virulence, such as the neuraminidase NanA and the mannosidase SpGH92, we anticipate that the α-fucosidases identified here will be important factors in developing more refined models of the S. pneumoniae-host interaction.


Assuntos
Antígenos/metabolismo , Polissacarídeos/metabolismo , Streptococcus pneumoniae/enzimologia , alfa-L-Fucosidase/metabolismo , Metabolismo dos Carboidratos , Interações Hospedeiro-Patógeno
9.
ACS Infect Dis ; 5(9): 1505-1517, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31287287

RESUMO

In 1969, Cashel and Gallant first observed the presence of (p)ppGpp-the signaling molecule of the stringent response-in starved bacterial cells. Fifty years later, (p)ppGpp and the stringent response have emerged as essential master regulators of not only the bacterial response to stress but also almost all aspects of bacterial physiology, virulence, and immune evasion. More worryingly, a wealth of data now indicate that (p)ppGpp and stringent response activation pose a serious threat to the efficacy and clinical success of antimicrobial therapy. Here, we focus on the central role that (p)ppGpp and the stringent response play in the phenomenon of antibiotic tolerance, as well as the acquisition, development, and expression of antibiotic resistance. We review these consequences of stringent response activation in relation to the main proteins involved in (p)ppGpp production and control, in particular the complex interplay between monofunctional and bifunctional long RelA/SpoT homologues (RSHs) and small alarmone synthetases (SASs). We also review the growing evidence to suggest that there are multiple other indirect pathways of stringent response induction that can affect antibiotic efficacy. Finally, we summarize recent studies that indicate the in vivo and clinical impact of (p)ppGpp production on antibiotic treatment outcomes. We conclude by reviewing the progress to date in the search for novel therapeutics that target the stringent response.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Guanosina Pentafosfato/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos
10.
J Struct Biol ; 207(3): 279-286, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31200020

RESUMO

Yersinia enterocolitica is a pectinolytic zoonotic foodborne pathogen, the genome of which contains pectin-binding proteins and several different classes of pectinases, including polysaccharide lyases (PLs) and an exopolygalacturonase. These proteins operate within a coordinated pathway to completely saccharify homogalacturonan (HG). Polysaccharide lyase family 2 (PL2) is divided into two major subfamilies that are broadly-associated with contrasting 'endolytic' (PL2A) or 'exolytic' (PL2B) activities on HG. In the Y. enterocolitica genome, the PL2A gene is adjacent to an independent carbohydrate binding module from family 32 (YeCBM32), which possesses a N-terminal secretion tag and is known to specifically bind HG. Independent CBMs are rare in nature and, most commonly, are fused to enzymes in order to potentiate catalysis. The unconventional gene architecture of YePL2A and YeCBM32, therefore, may represent an ancestral relic of a fission event that decoupled PL2A from its cognate CBM. To provide further insight into the evolution of this pectinolytic locus and the molecular basis of HG depolymerisation within Y. enterocolitica, we have resurrected a YePL2A-YeCBM32 chimera and demonstrated that the extant PL2A digests HG more efficiently. In addition, we have engineered a tryptophan from the active site of the exolytic YePL2B into YePL2A (YePL2A-K291W) and demonstrated, using X-ray crystallography of substrate complexes, that it is a structural determinant of exo-activity within the PL2 family. In this manner, surrogate structural platforms may assist in the study of phylogenetic relationships informed by extant and resurrected sequences, and can be used to overcome challenging structural problems within carbohydrate active enzyme families.


Assuntos
Glicosídeo Hidrolases/metabolismo , Pectinas/metabolismo , Polissacarídeo-Liases/metabolismo , Yersinia enterocolitica/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Modelos Moleculares , Pectinas/química , Filogenia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Conformação Proteica , Triptofano/química , Triptofano/genética , Triptofano/metabolismo , Yersinia enterocolitica/enzimologia , Yersinia enterocolitica/genética
11.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341080

RESUMO

Pectin is a complex uronic acid-containing polysaccharide typically found in plant cell walls, though forms of pectin are also found in marine diatoms and seagrasses. Genetic loci that target pectin have recently been identified in two phyla of marine bacteria. These loci appear to encode a pectin saccharification pathway that is distinct from the canonical pathway typically associated with phytopathogenic terrestrial bacteria. However, very few components of the marine pectin metabolism pathway have been experimentally validated. Here, we biochemically reconstructed the pectin saccharification pathway from a marine Pseudoalteromonas sp. in vitro and show that it results in the production of galacturonate and the key metabolic intermediate 5-keto-4-deoxyuronate (DKI). We demonstrate the sequential de-esterification and depolymerization of pectin into oligosaccharides and the synergistic action of glycoside hydrolases (GHs) to fully degrade these oligosaccharides into monosaccharides. Furthermore, we show that this pathway relies on enzymes belonging to GH family 105 to carry out the equivalent chemistry afforded by an exolytic polysaccharide lyase (PL) and KdgF in the canonical pectin pathway. Finally, we synthesize our findings into a model of marine pectin degradation and compare it with the canonical pathway. Our results underline the shifting view of pectin as a solely terrestrial polysaccharide and highlight the importance of marine pectin as a carbon source for suitably adapted marine heterotrophs. This alternate pathway has the potential to be exploited in the growing field of biofuel production from plant waste.IMPORTANCE Marine polysaccharides, found in the cell walls of seaweeds and other marine macrophytes, represent a vast sink of photosynthetically fixed carbon. As such, their breakdown by marine microbes contributes significantly to global carbon cycling. Pectin is an abundant polysaccharide found in the cell walls of terrestrial plants, but it has recently been reported that some marine bacteria possess the genetic capacity to degrade it. In this study, we biochemically characterized seven key enzymes from a marine bacterium that, together, fully degrade the backbone of pectin into its constituent monosaccharides. Our findings highlight the importance of pectin as a marine carbon source available to bacteria that possess this pathway. The characterized enzymes also have the potential to be utilized in the production of biofuels from plant waste.


Assuntos
Pectinas/metabolismo , Pseudoalteromonas/metabolismo , Redes e Vias Metabólicas , Polimerização , Pseudoalteromonas/química
12.
FEBS Lett ; 592(23): 3865-3897, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29608212

RESUMO

Streptococcus pneumoniae is a frequent colonizer of the upper airways; however, it is also an accomplished pathogen capable of causing life-threatening diseases. To colonize and cause invasive disease, this bacterium relies on a complex array of factors to mediate the host-bacterium interaction. The respiratory tract is rich in functionally important glycoconjugates that display a vast range of glycans, and, thus, a key component of the pneumococcus-host interaction involves an arsenal of bacterial carbohydrate-active enzymes to depolymerize these glycans and carbohydrate transporters to import the products. Through the destruction of host glycans, the glycan-specific metabolic machinery deployed by S. pneumoniae plays a variety of roles in the host-pathogen interaction. Here, we review the processing and metabolism of the major host-derived glycans, including N- and O-linked glycans, Lewis and blood group antigens, proteoglycans, and glycogen, as well as some dietary glycans. We discuss the role of these metabolic pathways in the S. pneumoniae-host interaction, speculate on the potential of key enzymes within these pathways as therapeutic targets, and relate S. pneumoniae as a model system to glycan processing in other microbial pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções Pneumocócicas/metabolismo , Polissacarídeos/metabolismo , Streptococcus pneumoniae/enzimologia , Metabolismo dos Carboidratos , Interações Hospedeiro-Patógeno , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia
13.
Methods Mol Biol ; 1588: 215-221, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28417372

RESUMO

Fluorophore-assisted carbohydrate electrophoresis (FACE) is a method in which a fluorophore is covalently attached to the reducing end of carbohydrates, thereby allowing visualization following high-resolution separation by electrophoresis. This method can be used for carbohydrate profiling and sequencing, as well as for the determination of the specificity of carbohydrate-active enzymes. Here, we describe and demonstrate the use of FACE to separate and visualize the glycans released following digestion of oligosaccharides by glycoside hydrolases (GHs) using two examples: (1) the digestion of chitobiose by the streptococcal ß-hexosaminidase GH20C, and (2) the digestion of glycogen by the GH13 member SpuA.


Assuntos
Carboidratos/química , Eletroforese/métodos , Glicosídeo Hidrolases/metabolismo , Carboidratos/análise , Dissacarídeos/análise , Dissacarídeos/química , Dissacarídeos/metabolismo , Glicogênio/análise , Glicogênio/química , Glicogênio/metabolismo , Pirenos/química
15.
PLoS Pathog ; 13(1): e1006090, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056108

RESUMO

The carbohydrate-rich coating of human tissues and cells provide a first point of contact for colonizing and invading bacteria. Commensurate with N-glycosylation being an abundant form of protein glycosylation that has critical functional roles in the host, some host-adapted bacteria possess the machinery to process N-linked glycans. The human pathogen Streptococcus pneumoniae depolymerizes complex N-glycans with enzymes that sequentially trim a complex N-glycan down to the Man3GlcNAc2 core prior to the release of the glycan from the protein by endo-ß-N-acetylglucosaminidase (EndoD), which cleaves between the two GlcNAc residues. Here we examine the capacity of S. pneumoniae to process high-mannose N-glycans and transport the products. Through biochemical and structural analyses we demonstrate that S. pneumoniae also possesses an α-(1,2)-mannosidase (SpGH92). This enzyme has the ability to trim the terminal α-(1,2)-linked mannose residues of high-mannose N-glycans to generate Man5GlcNAc2. Through this activity SpGH92 is able to produce a substrate for EndoD, which is not active on high-mannose glycans with α-(1,2)-linked mannose residues. Binding studies and X-ray crystallography show that NgtS, the solute binding protein of an ABC transporter (ABCNG), is able to bind Man5GlcNAc, a product of EndoD activity, with high affinity. Finally, we evaluated the contribution of EndoD and ABCNG to growth of S. pneumoniae on a model N-glycosylated glycoprotein, and the contribution of these enzymes and SpGH92 to virulence in a mouse model. We found that both EndoD and ABCNG contribute to growth of S. pneumoniae, but that only SpGH92 and EndoD contribute to virulence. Therefore, N-glycan processing, but not transport of the released glycan, is required for full virulence in S. pneumoniae. To conclude, we synthesize our findings into a model of N-glycan processing by S. pneumoniae in which both complex and high-mannose N-glycans are targeted, and in which the two arms of this degradation pathway converge at ABCNG.


Assuntos
Glicosídeo Hidrolases/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Infecções Pneumocócicas/metabolismo , Polissacarídeos/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Western Blotting , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Modelos Animais de Doenças , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptococcus pneumoniae/metabolismo , Virulência
16.
Proc Natl Acad Sci U S A ; 113(22): 6188-93, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185956

RESUMO

Uronates are charged sugars that form the basis of two abundant sources of biomass-pectin and alginate-found in the cell walls of terrestrial plants and marine algae, respectively. These polysaccharides represent an important source of carbon to those organisms with the machinery to degrade them. The microbial pathways of pectin and alginate metabolism are well studied and essentially parallel; in both cases, unsaturated monouronates are produced and processed into the key metabolite 2-keto-3-deoxygluconate (KDG). The enzymes required to catalyze each step have been identified within pectinolytic and alginolytic microbes; yet the function of a small ORF, kdgF, which cooccurs with the genes for these enzymes, is unknown. Here we show that KdgF catalyzes the conversion of pectin- and alginate-derived 4,5-unsaturated monouronates to linear ketonized forms, a step in uronate metabolism that was previously thought to occur spontaneously. Using enzyme assays, NMR, mutagenesis, and deletion of kdgF, we show that KdgF proteins from both pectinolytic and alginolytic bacteria catalyze the ketonization of unsaturated monouronates and contribute to efficient production of KDG. We also report the X-ray crystal structures of two KdgF proteins and propose a mechanism for catalysis. The discovery of the function of KdgF fills a 50-y-old gap in the knowledge of uronate metabolism. Our findings have implications not only for the understanding of an important metabolic pathway, but also the role of pectinolysis in plant-pathogen virulence and the growing interest in the use of pectin and alginate as feedstocks for biofuel production.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Gluconatos/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Ácidos Urônicos/metabolismo , Yersinia enterocolitica/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Conformação Proteica , Yersinia enterocolitica/crescimento & desenvolvimento
17.
Biochemistry ; 55(12): 1681-8, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26881922

RESUMO

One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.


Assuntos
Proteínas de Bactérias/metabolismo , Temperatura Baixa , Enzimas/metabolismo , Temperatura Alta , Termodinâmica , Animais , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Catálise , Enzimas/química , Cinética , Estrutura Secundária de Proteína
18.
J Biol Chem ; 290(52): 30888-900, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26491009

RESUMO

An important facet of the interaction between the pathogen Streptococcus pneumoniae (pneumococcus) and its human host is the ability of this bacterium to process host glycans. To achieve cleavage of the glycosidic bonds in host glycans, S. pneumoniae deploys a wide array of glycoside hydrolases. Here, we identify and characterize a new family 20 glycoside hydrolase, GH20C, from S. pneumoniae. Recombinant GH20C possessed the ability to hydrolyze the ß-linkages joining either N-acetylglucosamine or N-acetylgalactosamine to a wide variety of aglycon residues, thus revealing this enzyme to be a generalist N-acetylhexosaminidase in vitro. X-ray crystal structures were determined for GH20C in a ligand-free form, in complex with the N-acetylglucosamine and N-acetylgalactosamine products of catalysis and in complex with both gluco- and galacto-configured inhibitors O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc), O-(2-acetamido-2-deoxy-D-galactopyranosylidene)amino N-phenyl carbamate (GalPUGNAc), N-acetyl-D-glucosamine-thiazoline (NGT), and N-acetyl-D-galactosamine-thiazoline (GalNGT) at resolutions from 1.84 to 2.7 Å. These structures showed N-acetylglucosamine and N-acetylgalactosamine to be recognized via identical sets of molecular interactions. Although the same sets of interaction were maintained with the gluco- and galacto-configured inhibitors, the inhibition constants suggested preferred recognition of the axial O4 when an aglycon moiety was present (Ki for PUGNAc > GalPUGNAc) but preferred recognition of an equatorial O4 when the aglycon was absent (Ki for GalNGT > NGT). Overall, this study reveals GH20C to be another tool that is unique in the arsenal of S. pneumoniae and that it may implement the effort of the bacterium to utilize and/or destroy the wide array of host glycans that it may encounter.


Assuntos
Proteínas de Bactérias/química , Genoma Bacteriano , Polissacarídeos/química , Streptococcus pneumoniae/enzimologia , beta-N-Acetil-Hexosaminidases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Humanos , Polissacarídeos/genética , Polissacarídeos/metabolismo , Estrutura Terciária de Proteína , Streptococcus pneumoniae/genética , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
19.
J Mol Evol ; 81(3-4): 110-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26349578

RESUMO

Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Aptidão Genética/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Evolução Molecular , Modelos Moleculares , Filogenia , Relação Estrutura-Atividade
20.
J Biol Chem ; 290(35): 21231-43, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26160170

RESUMO

Family 2 polysaccharide lyases (PL2s) preferentially catalyze the ß-elimination of homogalacturonan using transition metals as catalytic cofactors. PL2 is divided into two subfamilies that have been generally associated with secretion, Mg(2+) dependence, and endolysis (subfamily 1) and with intracellular localization, Mn(2+) dependence, and exolysis (subfamily 2). When present within a genome, PL2 genes are typically found as tandem copies, which suggests that they provide complementary activities at different stages along a catabolic cascade. This relationship most likely evolved by gene duplication and functional divergence (i.e. neofunctionalization). Although the molecular basis of subfamily 1 endolytic activity is understood, the adaptations within the active site of subfamily 2 enzymes that contribute to exolysis have not been determined. In order to investigate this relationship, we have conducted a comparative enzymatic analysis of enzymes dispersed within the PL2 phylogenetic tree and elucidated the structure of VvPL2 from Vibrio vulnificus YJ016, which represents a transitional member between subfamiles 1 and 2. In addition, we have used ancestral sequence reconstruction to functionally investigate the segregated evolutionary history of PL2 progenitor enzymes and illuminate the molecular evolution of exolysis. This study highlights that ancestral sequence reconstruction in combination with the comparative analysis of contemporary and resurrected enzymes holds promise for elucidating the origins and activities of other carbohydrate active enzyme families and the biological significance of cryptic metabolic pathways, such as pectinolysis within the zoonotic marine pathogen V. vulnificus.


Assuntos
Bactérias/enzimologia , Evolução Molecular , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Sequência de Aminoácidos , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Polissacarídeo-Liases/química , Conformação Proteica , Alinhamento de Sequência , Vibrio vulnificus/química , Vibrio vulnificus/enzimologia , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...