Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(12): e51150, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227247

RESUMO

The functions and morphology of cellular membranes are intimately related and depend not only on their protein content but also on the repertoire of lipids that comprise them. In the absence of in vivo data on lipid asymmetry in endomembranes, it has been argued that motors, scaffolding proteins or integral membrane proteins rather than non-lamellar bilayer lipids such as diacylglycerol (DAG), are responsible for shaping of organelles, local membrane curvature and fusion. The effects of direct alteration of levels of such lipids remain predominantly uninvestigated. Diacylglycerol (DAG) is a well documented second messenger. Here we demonstrate two additional conserved functions of DAG: a structural role in organelle morphology, and a role in localised extreme membrane curvature required for fusion for which proteins alone are insufficient. Acute and inducible DAG depletion results in failure of the nuclear envelope (NE) to reform at mitosis and reorganisation of the ER into multi-lamellar sheets as revealed by correlative light and electron microscopy and 3D reconstructions. Remarkably, depleted cells divide without a complete NE, and unless rescued by 1,2 or 1,3 DAG soon die. Attenuation of DAG levels by enzyme microinjection into echinoderm eggs and embryos also results in alterations of ER morphology and nuclear membrane fusion. Our findings demonstrate that DAG is an in vivo modulator of organelle morphology in mammalian and echinoderm cells, indicating a fundamental role conserved across the deuterostome superphylum.


Assuntos
Diglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membrana Nuclear/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diacilglicerol Quinase/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Mamíferos/metabolismo , Fusão de Membrana/efeitos dos fármacos , Microinjeções , Mitose/efeitos dos fármacos , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/farmacologia , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/ultraestrutura , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Fenótipo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/administração & dosagem , Monoéster Fosfórico Hidrolases/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Ouriços-do-Mar/citologia , Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/embriologia , Receptor de Lamina B
2.
PLoS One ; 5(8): e12208, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20808914

RESUMO

Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCgamma), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P(2)) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism.


Assuntos
Fusão de Membrana , Fosfatidilinositóis/metabolismo , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Diglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Transferência Ressonante de Energia de Fluorescência , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Lytechinus/citologia , Masculino , Fusão de Membrana/efeitos dos fármacos , Microscopia de Fluorescência , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/metabolismo , Pirrolidinonas/farmacologia
3.
PLoS One ; 4(1): e4255, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19165341

RESUMO

BACKGROUND: The cytoplasm of eukaryotic cells is a highly dynamic compartment where membranes readily undergo fission and fusion to reorganize the cytoplasmic architecture, and to import, export and transport various cargos within the cell. The double membrane of the nuclear envelope that surrounds the nucleus, segregates the chromosomes from cytoplasm and regulates nucleocytoplasmic transport through pores. Many details of its formation are still unclear. At fertilization the sperm devoid of nuclear envelope pores enters the egg. Although most of the sperm nuclear envelope disassembles, remnants of the envelope at the acrosomal and centriolar fossae do not and are subsequently incorporated into the newly forming male pronuclear envelope. Remnants are conserved from annelid to mammalian sperm. METHODOLOGY/PRINCIPAL FINDINGS: Using lipid mass spectrometry and a new application of deuterium solid-state NMR spectroscopy we have characterized the lipid composition and membrane dynamics of the sperm nuclear envelope remnants in isolated sperm nuclei. CONCLUSIONS/SIGNIFICANCE: We report nuclear envelope remnants are relatively fluid membranes rich in sterols, devoid of sphingomyelin, and highly enriched in polyphosphoinositides and polyunsaturated phospholipids. The localization of the polybasic effector domain of MARCKS illustrates the non-nuclear aspect of the polyphosphoinositides. Based on their atypical biophysical characteristics and phospholipid composition, we suggest a possible role for nuclear envelope remnants in membrane fusion leading to nuclear envelope assembly.


Assuntos
Membrana Nuclear/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Esteróis/metabolismo , Animais , Sistema Livre de Células , Feminino , Fertilização/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Masculino , Proteínas de Membrana/antagonistas & inibidores , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Substrato Quinase C Rico em Alanina Miristoilada , Ouriços-do-Mar , Espermatozoides/metabolismo , Esteróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...