Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 836, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964926

RESUMO

Identifying the factors that determine habitat suitability and hence patterns of wildlife abundances over broad spatial scales is important for conservation. Ecosystem productivity is a key aspect of habitat suitability, especially for large mammals. Our goals were to a) explain patterns of moose (Alces alces) abundance across Russia based on remotely sensed measures of vegetation productivity using Dynamic Habitat Indices (DHIs), and b) examine if patterns of moose abundance and productivity differed before and after the collapse of the Soviet Union. We evaluated the utility of the DHIs using multiple regression models predicting moose abundance by administrative regions. Univariate models of the individual DHIs had lower predictive power than all three combined. The three DHIs together with environmental variables, explained 79% of variation in moose abundance. Interestingly, the predictive power of the models was highest for the 1980s, and decreased for the two subsequent decades. We speculate that the lower predictive power of our environmental variables in the later decades may be due to increasing human influence on moose densities. Overall, we were able to explain patterns in moose abundance in Russia well, which can inform wildlife managers on the long-term patterns of habitat use of the species.


Assuntos
Cervos , Ecossistema , Densidade Demográfica , Animais , Federação Russa , Fatores de Tempo
2.
Glob Ecol Biogeogr ; 28(5): 548-556, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31217748

RESUMO

ISSUE: Geodiversity (i.e., the variation in Earth's abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversity-geodiversity relationships across scales. EVIDENCE: We show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA's Shuttle Radar Topography Mission (SRTM) and c. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation. CONCLUSION: With the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity. Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversity-geodiversity relationships across scales and guide the conservation of nature.

3.
Nat Commun ; 10(1): 742, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765694

RESUMO

Historical and future trends in net primary productivity (NPP) and its sensitivity to global change are largely unknown because of the lack of long-term, high-resolution data. Here we test whether annually resolved tree-ring stable carbon (δ13C) and oxygen (δ18O) isotopes can be used as proxies for reconstructing past NPP. Stable isotope chronologies from four sites within three distinct hydroclimatic environments in the eastern United States (US) were compared in time and space against satellite-derived NPP products, including the long-term Global Inventory Modeling and Mapping Studies (GIMMS3g) NPP (1982-2011), the newest high-resolution Landsat NPP (1986-2015), and the Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP. We show that tree-ring isotopes, in particular δ18O, correlate strongly with satellite NPP estimates at both local and large geographical scales in the eastern US. These findings represent an important breakthrough for estimating interannual variability and long-term changes in terrestrial productivity at the biome scale.


Assuntos
Isótopos de Carbono/metabolismo , Ecossistema , Isótopos de Oxigênio/metabolismo , Estações do Ano , Árvores/metabolismo , Algoritmos , Conservação dos Recursos Naturais/métodos , Geografia , Modelos Biológicos , Imagens de Satélites/métodos , Árvores/crescimento & desenvolvimento , Estados Unidos
4.
Sensors (Basel) ; 12(5): 6347-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22778645

RESUMO

Digital surface models (DSMs) are widely used in forest science to model the forest canopy. Stereo pairs of very high resolution satellite and digital aerial images are relatively new and their absolute accuracy for DSM generation is largely unknown. For an assessment of these input data two DSMs based on a WorldView-2 stereo pair and a ADS80 DSM were generated with photogrammetric instruments. Rational polynomial coefficients (RPCs) are defining the orientation of the WorldView-2 satellite images, which can be enhanced with ground control points (GCPs). Thus two WorldView-2 DSMs were distinguished: a WorldView-2 RPCs-only DSM and a WorldView-2 GCP-enhanced RPCs DSM. The accuracy of the three DSMs was estimated with GPS measurements, manual stereo-measurements, and airborne laser scanning data (ALS). With GCP-enhanced RPCs the WorldView-2 image orientation could be optimised to a root mean square error (RMSE) of 0.56 m in planimetry and 0.32 m in height. This improvement in orientation allowed for a vertical median error of -0.24 m for the WorldView-2 GCP-enhanced RPCs DSM in flat terrain. Overall, the DSM based on ADS80 images showed the highest accuracy of the three models with a median error of 0.08 m over bare ground. As the accuracy of a DSM varies with land cover three classes were distinguished: herb and grass, forests, and artificial areas. The study suggested the ADS80 DSM to best model actual surface height in all three land cover classes, with median errors <1.1 m. The WorldView-2 GCP-enhanced RPCs model achieved good accuracy, too, with median errors of -0.43 m for the herb and grass vegetation and -0.26 m for artificial areas. Forested areas emerged as the most difficult land cover type for height modelling; still, with median errors of -1.85 m for the WorldView-2 GCP-enhanced RPCs model and -1.12 m for the ADS80 model, the input data sets evaluated here are quite promising for forest canopy modelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...