Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 107(3): 599-613, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34741521

RESUMO

CONTEXT: X-linked hypophosphatemia (XLH) is an inherited skeletal disorder that can lead to lifelong deleterious musculoskeletal and functional consequences. Although often perceived as a childhood condition, children and adults both experience the negative effects of XLH. Adolescents and young adults (AYAs) benefit from effective health care transition (HCT) preparation to support the transfer from pediatric- to adult-focused care. Whereas transition timelines, milestones, and educational tools exist for some chronic conditions, they do not meet the unique needs of patients with XLH. EVIDENCE ACQUISITION: To produce the first expert recommendations on HCT preparation for AYAs with XLH developed by clinical care investigators and transition experts, a formal literature search was conducted and discussed in an advisory board meeting in July 2020. A modified Delphi method was used to refine expert opinion and facilitate a consensus position. EVIDENCE SYNTHESIS: We identified the need for psychosocial and access-related resources for disease education, genetic counseling, family planning, and AYA emancipation from caregiver-directed care. Additionally, we recognized that it is necessary to facilitate communication with patients through channels familiar and accessible to AYAs and teach patients to advocate for their health care/access to specialists. CONCLUSION: Clear HCT preparation guidelines and treatment-related goals are defined. Individualized timelines and practical strategies for HCT preparation are proposed to optimize health outcomes resulting from continuous clinical care throughout the patient lifecycle. We provide an expert consensus statement describing a tailored HCT preparation program specifically for AYAs with XLH to aid in the effective transfer from pediatric- to adult-focused health care.


Assuntos
Raquitismo Hipofosfatêmico Familiar/terapia , Guias de Prática Clínica como Assunto , Transição para Assistência do Adulto/normas , Adolescente , Criança , Consenso , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/epidemiologia , Humanos , Adulto Jovem
2.
Biotechnol J ; 12(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28881093

RESUMO

Bone marrow-derived mesenchymal stromal cells (BMSC), when expanded directly within 3D ceramic scaffolds in perfusion bioreactors, more reproducibly form bone when implanted in vivo as compared to conventional expansion on 2D polystyrene dishes/flasks. Since the bioreactor-based expansion on 3D ceramic scaffolds encompasses multiple aspects that are inherently different from expansion on 2D polystyrene, we aimed to decouple the effects of specific parameters among these two model systems. We assessed the effects of the: 1) 3D scaffold vs. 2D surface; 2) ceramic vs. polystyrene materials; and 3) BMSC niche established within the ceramic pores during in vitro culture, on subsequent in vivo bone formation. While BMSC expanded on 3D polystyrene scaffolds in the bioreactor could maintain their in vivo osteogenic potential, results were similar as BMSC expanded in monolayer on 2D polystyrene, suggesting little influence of the scaffold 3D environment. Bone formation was most reproducible when BMSC are expanded on 3D ceramic, highlighting the influence of the ceramic substrate. The presence of a pre-formed niche within the scaffold pores had negligible effects on the in vivo bone formation. The results of this study allow a greater understanding of the parameters required for perfusion bioreactor-based manufacturing of osteogenic grafts for clinical applications.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/instrumentação , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Alicerces Teciduais , Adolescente , Adulto , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Proliferação de Células , Cerâmica/química , Humanos , Pessoa de Meia-Idade , Perfusão , Adulto Jovem
3.
Stem Cells Transl Med ; 5(9): 1229-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27365484

RESUMO

UNLABELLED: : The induction of mesenchymal stem cells (MSCs) toward the osteoblastic lineage using osteogenic supplements prior to implantation is one approach under examination to enhance their bone-forming potential. MSCs rapidly lose their induced phenotype upon removal of the soluble stimuli; however, their bone-forming potential can be sustained when provided with continued instruction via extracellular matrix (ECM) cues. In comparison with dissociated cells, MSC spheroids exhibit improved survival and secretion of trophic factors while maintaining their osteogenic potential. We hypothesized that entrapment of MSC spheroids formed from osteogenically induced cells would exhibit better preservation of their bone-forming potential than would dissociated cells from monolayer culture. Spheroids exhibited comparable osteogenic potential and increased proangiogenic potential with or without osteogenic preconditioning versus monolayer-cultured MSCs. Spheroids were then entrapped in collagen hydrogels, and the osteogenic stimulus was removed. In comparison with entrapped dissociated MSCs, spheroids exhibited significantly increased markers of osteogenic differentiation. The capacity of MSC spheroids to retain their osteogenic phenotype upon withdrawal of inductive cues was mediated by α2ß1 integrin binding to cell-secreted ECM. These results demonstrate the capacity of spheroidal culture to sustain the mineral-producing phenotype of MSCs, thus enhancing their contribution toward bone formation and repair. SIGNIFICANCE: Despite the promise of mesenchymal stem cells (MSCs) for cell-based therapies for tissue repair and regeneration, there is little evidence that transplanted MSCs directly contribute to new bone formation, suggesting that induced cells rapidly lose their osteogenic phenotype or undergo apoptosis. In comparison with dissociated cells, MSC spheroids exhibit increased trophic factor secretion and improved cell survival. The loss of phenotype represents a significant clinical challenge for cell therapies, yet there is no evidence for whether MSC spheroids retain their osteogenic phenotype upon entrapment in a clinically relevant biomaterial. These findings demonstrate that MSC spheroids retain their osteogenic phenotype better than do dissociated MSCs, and this is due to integrin engagement with the cell-secreted extracellular matrix. These data provide evidence for a novel approach for potentiating the use of MSCs in bone repair.


Assuntos
Técnicas de Cultura de Células/métodos , Integrina alfa2beta1/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Esferoides Celulares/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Colágeno , Matriz Extracelular , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/fisiologia , Esferoides Celulares/metabolismo
4.
Biomaterials ; 74: 178-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26457835

RESUMO

Prior to transplantation, mesenchymal stem/stromal cells (MSCs) can be induced toward the osteoblastic phenotype using a cocktail of soluble supplements. However, there is little evidence of differentiated MSCs directly participating in bone formation, suggesting that MSCs may either die or revert in phenotype upon transplantation. Cell-secreted decellularized extracellular matrices (DMs) are a promising platform to confer bioactivity and direct cell fate through the presentation of a complex and physiologically relevant milieu. Therefore, we examined the capacity of biomimetic DMs to preserve the mineral-producing phenotype upon withdrawal of the induction stimulus. Regardless of induction duration, ranging up to 6 weeks, MSCs exhibited up to a 5-fold reduction in osteogenic markers within 24 h following stimulus withdrawal. We show that seeding osteogenically induced MSCs on DMs yields up to 2-fold more calcium deposition than tissue culture plastic, and this improvement is at least partially mediated by increasing actin cytoskeletal tension via the ROCK II pathway. MSCs on DMs also secreted 25% more vascular endothelial growth factor (VEGF), a crucial endogenous proangiogenic factor that is abrogated during MSC osteogenic differentiation. The deployment of DMs into a subcutaneous ectopic site enhanced the persistence of MSCs 5-fold, vessel density 3-fold, and bone formation 2-fold more than MSCs delivered without DMs. These results underscore the need for deploying MSCs using biomaterial platforms such as DMs to preserve the in vitro-acquired mineral-producing phenotype and accelerate the process of bone repair.


Assuntos
Desenvolvimento Ósseo , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Animais , Proliferação de Células , Humanos , Camundongos , Reologia
6.
Stem Cells Transl Med ; 3(5): 643-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682286

RESUMO

Bone marrow-derived mesenchymal stem/stromal cells (MSCs) have demonstrated success in the clinical treatment of hematopoietic pathologies and cardiovascular disease and are the focus of treating other diseases of the musculoskeletal, digestive, integumentary, and nervous systems. However, during the requisite two-dimensional (2D) expansion to achieve a clinically relevant number of cells, MSCs exhibit profound degeneration in progenitor potency. Proliferation, multilineage potential, and colony-forming efficiency are fundamental progenitor properties that are abrogated by extensive monolayer culture. To harness the robust therapeutic potential of MSCs, a consistent, rapid, and minimally detrimental expansion method is necessary. Alternative expansion efforts have exhibited promise in the ability to preserve MSC progenitor potency better than the 2D paradigm by mimicking features of the native bone marrow niche. MSCs have been successfully expanded when stimulated by growth factors, under reduced oxygen tension, and in three-dimensional bioreactors. MSC therapeutic value can be optimized for clinical applications by combining system inputs to tailor culture parameters for recapitulating the niche with probes that nondestructively monitor progenitor potency. The purpose of this review is to explore how modulations in the 2D paradigm affect MSC progenitor properties and to highlight recent efforts in alternative expansion techniques.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células da Medula Óssea/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo
7.
FASEB J ; 27(12): 4844-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24005905

RESUMO

Alginate hydrogels containing cell-instructive cues are the subject of intense interest for their use as cell carriers in bone tissue engineering. Peptides and proteins are chemically grafted onto these hydrophilic materials to facilitate adhesion and direct phenotype of entrapped cells. However, the presentation of a single or small number of peptides does not represent the complexity of the native extracellular matrix (ECM) of bony tissues. Mesenchymal stem cells (MSCs) secrete ECM that can be harvested and deposited on various substrata to promote osteogenic differentiation. In this study, we hypothesized that the presentation of engineered cell-secreted ECM on microbeads suspended in alginate hydrogels would promote cell adhesion and enhance osteogenic differentiation of undifferentiated MSCs without chemical incorporation of cell-adhesive peptides. Human MSCs entrapped in alginate hydrogels loaded with ECM-coated beads showed increased interaction with beads, when compared with cells suspended in hydrogels containing uncoated blank (BLK) beads. MSCs entrapped in ECM gels exhibited increased alkaline phosphatase (ALP) activity and expression of osteogenic genes in vitro compared with hydrogels modified with arginine-glycine-aspartic acid (RGD)-containing peptides. Transplantation of MSCs into an ectopic site resulted in significant increases in blood vessel density for ECM hydrogels when compared with the BLK or RGD gels. Furthermore, we observed comparable levels of bone formation at 6 wk with ECM and RGD hydrogels. These findings demonstrate that engineered ECM can be deployed in a minimally invasive manner to direct the formation of bony tissue. This strategy may provide an alternative to the engraftment of proteins or peptides onto the polymer backbone of hydrogels for directing cellular behavior.


Assuntos
Alginatos/farmacologia , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microesferas , Osteogênese/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/química , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligopeptídeos/farmacologia , Ratos
8.
PLoS One ; 7(4): e35579, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536411

RESUMO

Mesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear. We hypothesized that the proangiogenic potential of MSCs was dependent upon their stage of osteogenic differentiation. After 7 days of culture, we observed the greatest osteogenic differentiation of MSCs when cells were cultured with dexamethasone (OM+). Conversely, VEGF protein secretion and upregulation of angiogenic genes were greatest in MSCs cultured in growth media (GM). Using conditioned media from MSCs in each culture condition, GM-conditioned media maximized proliferation and enhanced chemotactic migration and tubule formation of endothelial colony forming cells (ECFCs). The addition of a neutralizing VEGF(165/121) antibody to conditioned media attenuated ECFC proliferation and chemotactic migration. ECFCs seeded on microcarrier beads and co-cultured with MSCs previously cultured in GM in a fibrin gel exhibited superior sprouting compared to MSCs previously cultured in OM+. These results confirm that MSCs induced farther down the osteogenic lineage possess reduced proangiogenic potential, thereby providing important findings for consideration when using MSCs for bone repair.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Meios de Cultivo Condicionados/química , Citocinas/metabolismo , Células Endoteliais/fisiologia , Fator 2 de Crescimento de Fibroblastos , Humanos , Sialoproteína de Ligação à Integrina , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica/genética , Osteogênese/genética , Fator de Transcrição Sp7 , Fatores de Transcrição , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...