Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352349

RESUMO

BACKGROUND: Cerebral cavernous malformations (CCM) are vascular lesions within the central nervous system, consisting of dilated and hemorrhage-prone capillaries. CCMs can cause debilitating neurological symptoms, and surgical excision or stereotactic radiosurgery are the only current treatment options. Meanwhile, transient blood-brain barrier opening (BBBO) with focused ultrasound (FUS) and microbubbles is now understood to exert potentially beneficial bioeffects, such as stimulation of neurogenesis and clearance of amyloid-ß. Here, we tested whether FUS BBBO could be deployed therapeutically to control CCM formation and progression in a clinically-representative murine model. METHODS: CCMs were induced in mice by postnatal, endothelial-specific Krit1 ablation. FUS was applied for BBBO with fixed peak-negative pressures (PNPs; 0.2-0.6 MPa) or passive cavitation detection-modulated PNPs. Magnetic resonance imaging (MRI) was used to target FUS treatments, evaluate safety, and measure longitudinal changes in CCM growth after BBBO. RESULTS: FUS BBBO elicited gadolinium accumulation primarily at the perilesional boundaries of CCMs, rather than lesion cores. Passive cavitation detection and gadolinium contrast enhancement were comparable in CCM and wild-type mice, indicating that Krit1 ablation does not confer differential sensitivity to FUS BBBO. Acutely, CCMs exposed to FUS BBBO remained structurally stable, with no signs of hemorrhage. Longitudinal MRI revealed that FUS BBBO halted the growth of 94% of CCMs treated in the study. At 1 month, FUS BBBO-treated lesions lost, on average, 9% of their pre-sonication volume. In contrast, non-sonicated control lesions grew to 670% of their initial volume. Lesion control with FUS BBBO was accompanied by a marked reduction in the area and mesenchymal appearance of Krit mutant endothelium. Strikingly, in mice receiving multiple BBBO treatments with fixed PNPs, de novo CCM formation was significantly reduced by 81%. Mock treatment plans on MRIs of patients with surgically inaccessible lesions revealed their lesions are amenable to FUS BBBO with current clinical technology. CONCLUSIONS: Our results establish FUS BBBO as a novel, non-invasive modality that can safely arrest murine CCM growth and prevent their de novo formation. As an incisionless, MR image-guided therapy with the ability to target eloquent brain locations, FUS BBBO offers an unparalleled potential to revolutionize the therapeutic experience and enhance the accessibility of treatments for CCM patients.

2.
Adv Drug Deliv Rev ; 191: 114583, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272635

RESUMO

The blood brain barrier (BBB) plays a critically important role in the regulation of central nervous system (CNS) homeostasis, but also represents a major limitation to treatments of brain pathologies. In recent years, focused ultrasound (FUS) in conjunction with gas-filled microbubble contrast agents has emerged as a powerful tool for transiently and non-invasively disrupting the BBB in a targeted and image-guided manner, allowing for localized delivery of drugs, genes, or other therapeutic agents. Beyond the delivery of known therapeutics, FUS-mediated BBB opening also demonstrates the potential for use in neuromodulation and the stimulation of a range of cell- and tissue-level physiological responses that may prove beneficial in disease contexts. Clinical trials investigating the safety and efficacy of FUS-mediated BBB opening are well underway, and offer promising non-surgical approaches to treatment of devastating pathologies. This article reviews a range of pre-clinical and clinical studies demonstrating the tremendous potential of FUS to fundamentally change the paradigm of treatment for CNS diseases.


Assuntos
Barreira Hematoencefálica , Microbolhas , Humanos , Transporte Biológico , Meios de Contraste , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...