Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
HGG Adv ; 5(3): 100289, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38571311

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.

2.
Genet Med ; 25(8): 100871, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120726

RESUMO

PURPOSE: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder. METHODS: DNAm profiles of individuals carrying pathogenic HNRNPU variants, identified through an international multicenter collaboration, were assessed using Infinium Methylation EPIC arrays. Statistical and functional correlation analyses were performed comparing the HNRNPU cohort with 56 previously reported DNAm episignatures. RESULTS: A robust and reproducible DNAm episignature and global DNAm profile were identified. Correlation analysis identified partial overlap and similarity of the global HNRNPU DNAm profile to several other rare disorders. CONCLUSION: This study demonstrates new evidence of a specific and sensitive DNAm episignature associated with pathogenic heterozygous HNRNPU variants, establishing its utility as a clinical biomarker for the expansion of the EpiSign diagnostic test.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Epigenômica , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Biomarcadores
3.
Mol Syndromol ; 12(1): 1-11, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33776621

RESUMO

Robertsonian translocations (RTs) result from fusion of 2 acrocentric chromosomes (e.g., 13, 14, 15, 21, 22) and consequential losses of segments of the p arms containing 47S rDNA clusters and transcription factor binding sites. Depending on the position of the breakpoints, the size of these losses vary considerably between types of RTs. The prevalence of RTs in the general population is estimated to be around 1 per 800 individuals, making RTs the most common chromosomal rearrangement in healthy individuals. Based on their prevalence, RTs are classified as "common," rob(13;14) and rob(14;21), or "rare" (the 8 remaining nonhomologous combinations). Carriers of RTs are at an increased risk for offspring with chromosomal imbalances or with uniparental disomy. RTs are generally regarded as phenotypically neutral, although, due to RTs formation, 2 of the 10 ribosomal rDNA gene clusters, several long noncoding RNAs, and in the case of RTs involving chromosome 21, several mRNA encoding genes are lost. Nevertheless, recent evidence indicates that RTs may have a significant phenotypic impact. In particular, rob(13;14) carriers have a significantly elevated risk for breast cancer. While RTs are easily spotted by routine karyotyping, they may go unnoticed if only array-CGH and NextGen sequencing methods are applied. This review first discusses possible molecular mechanisms underlying the particularly high rates of RT formation and their incidence in the general population, and second, likely causes for the elevated cancer risk of some RTs will be examined.

4.
Eur J Hum Genet ; 29(4): 541-552, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33311710

RESUMO

Participation of clinical genetic laboratories in External Quality Assessment schemes (EQAs) is a powerful method to ascertain if any improvement or additional training is required in the diagnostic service. Here, we provide evidence from recent EQAs that the competence in recognizing and interpreting cytogenetic aberrations is variable and could impact patient management. We identify several trends that could affect cytogenomic competence. Firstly, as a result of the age distribution among clinical laboratory geneticists (CLGs) registered at the European Board of Medical Genetics, about 25-30% of those with experience in cytogenetics will retire during the next decade. At the same time, there are about twice as many molecular geneticists to cytogeneticists among the younger CLGs. Secondly, when surveying training programs for CLG, we observed that not all programs guarantee that candidates gather sufficient experience in clinical cytogenomics. Thirdly, we acknowledge that whole genome sequencing (WGS) has a great attraction to biomedical scientists that wish to enter a training program for CLG. This, with a larger number of positions available, makes a choice for specialization in molecular genetics logical. However, current WGS technology cannot provide a diagnosis in all cases. Understanding the etiology of chromosomal rearrangements is essential for appropriate follow-up and for ascertaining recurrence risks. We define the minimal knowledge a CLG should have about cytogenomics in a world dominated by WGS, and discuss how laboratory directors and boards of professional organizations in clinical genetics can uphold cytogenomic competence by providing adequate CLG training programs and attracting sufficient numbers of trainees.


Assuntos
Competência Clínica , Análise Citogenética/métodos , Testes Genéticos/métodos , Genômica/métodos , Análise Citogenética/normas , Testes Genéticos/normas , Genômica/normas , Humanos , Laboratórios Clínicos/normas
5.
Genome Med ; 11(1): 79, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801603

RESUMO

BACKGROUND: Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. METHODS: We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. RESULTS: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. CONCLUSIONS: These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Genoma Humano , Variação Estrutural do Genoma , Humanos , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
6.
Am J Med Genet A ; 179(7): 1276-1286, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31124279

RESUMO

Lysine-specific demethylase 6B (KDM6B) demethylates trimethylated lysine-27 on histone H3. The methylation and demethylation of histone proteins affects gene expression during development. Pathogenic alterations in histone lysine methylation and demethylation genes have been associated with multiple neurodevelopmental disorders. We have identified a number of de novo alterations in the KDM6B gene via whole exome sequencing (WES) in a cohort of 12 unrelated patients with developmental delay, intellectual disability, dysmorphic facial features, and other clinical findings. Our findings will allow for further investigation in to the role of the KDM6B gene in human neurodevelopmental disorders.


Assuntos
Variação Genética , Histona Desmetilases com o Domínio Jumonji/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino
7.
Eur J Med Genet ; 62(9): 103543, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30248410

RESUMO

Whole genome sequencing (WGS) holds the potential to identify pathogenic gene mutations, copy number variation, uniparental disomy and structural rearrangements in a single genetic test. With its high diagnostic yield and decreasing costs, the question arises whether WGS can serve as a single test for all referrals to diagnostic genome laboratories ("one test fits all"). Here, we provide an estimate for the proportion of clinically relevant aberrations identified by light microscopy in postnatal referrals that would go undetected by WGS. To this end, we compiled the clinically relevant abnormal findings for each of the different referral categories in our laboratory during the period 2006-2015. We assumed that WGS would be performed on 300-500 bp DNA fragments with 150-bp paired sequence reads, and that the mean genome coverage is 30x, corresponding to current practice. For the detection of chromosomal mosaicism we set minimum thresholds of 10% for monosomy and 20% for trisomy. Based on the literature we assumed that balanced Robertsonian translocations and ∼9% of other, balanced chromosome rearrangements would not be detectable because of breakpoints in sequences of repetitive DNA. Based on our analysis of all 14,957 referrals, including 1455 abnormal cases, we show that at least 8.1% of these abnormalities would escape detection (corresponding to 0.79% of all referrals). The highest rate occurs in referrals of premature ovarian failure, as 73.3% of abnormalities would not be identified because of the frequent occurrence of low-level sex chromosome mosaicism. Among referrals of recurrent miscarriage, 25.6% of abnormalities would go undetected, mainly because of a high proportion of balanced Robertsonian translocations. In referrals of mental retardation (with or without multiple congenital anomalies) the abnormality would be missed in only 0.35% of referrals. These include cases without imbalances of unique DNA sequences but of clinical relevance, as for example, r(20) epilepsy syndrome. The expected shift to large-scale implementation of WGS ("one test fits most") as initial genetic test will be beneficial to patients and their families, since a cause for the clinical phenotype can be identified in more cases by a single genetic test at an early phase in the diagnostic process. However, a niche for genome analysis by light microscopy will remain. For example, in referrals of newborns with a suspicion of Down syndrome, karyotyping is not only a cost-effective method for providing a quick diagnosis, but also discriminates between trisomy 21 and a Robertsonian translocation involving chromosome 21. Thus, when replacing karyotyping by WGS, one must be aware of the rates and spectra of undetected abnormalities. In addition, it is equally important that requirements for cytogenetic follow-up studies are recognized.


Assuntos
Transtornos Cromossômicos/genética , Testes Genéticos/métodos , Cariotipagem/métodos , Sequenciamento Completo do Genoma/métodos , Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Testes Genéticos/normas , Humanos , Recém-Nascido , Cariotipagem/normas , Sensibilidade e Especificidade , Sequenciamento Completo do Genoma/normas
8.
Clin Case Rep ; 6(5): 788-791, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29744057

RESUMO

One of the confounders in noninvasive prenatal testing (NIPT) is the vanishing twin phenomenon. Prolonged contribution to the maternal Cell-free DNA (cfDNA) pool by cytotrophoblasts representing a demised, aneuploid cotwin may lead to a false-positive outcome for a normal, viable twin. We show that a vanishing trisomy-14 twin contributes to cfDNA for more than 2 weeks after demise.

9.
Genome Med ; 9(1): 9, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28126037

RESUMO

BACKGROUND: Germline chromothripsis causes complex genomic rearrangements that are likely to affect multiple genes and their regulatory contexts. The contribution of individual rearrangements and affected genes to the phenotypes of patients with complex germline genomic rearrangements is generally unknown. METHODS: To dissect the impact of germline chromothripsis in a relevant developmental context, we performed trio-based RNA expression analysis on blood cells, induced pluripotent stem cells (iPSCs), and iPSC-derived neuronal cells from a patient with de novo germline chromothripsis and both healthy parents. In addition, Hi-C and 4C-seq experiments were performed to determine the effects of the genomic rearrangements on transcription regulation of genes in the proximity of the breakpoint junctions. RESULTS: Sixty-seven genes are located within 1 Mb of the complex chromothripsis rearrangements involving 17 breakpoints on four chromosomes. We find that three of these genes (FOXP1, DPYD, and TWIST1) are both associated with developmental disorders and differentially expressed in the patient. Interestingly, the effect on TWIST1 expression was exclusively detectable in the patient's iPSC-derived neuronal cells, stressing the need for studying developmental disorders in the biologically relevant context. Chromosome conformation capture analyses show that TWIST1 lost genomic interactions with several enhancers due to the chromothripsis event, which likely led to deregulation of TWIST1 expression and contributed to the patient's craniosynostosis phenotype. CONCLUSIONS: We demonstrate that a combination of patient-derived iPSC differentiation and trio-based molecular profiling is a powerful approach to improve the interpretation of pathogenic complex genomic rearrangements. Here we have applied this approach to identify misexpression of TWIST1, FOXP1, and DPYD as key contributors to the complex congenital phenotype resulting from germline chromothripsis rearrangements.


Assuntos
Cromotripsia , Mutação em Linhagem Germinativa , Transcriptoma , Di-Hidrouracila Desidrogenase (NADP)/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína 1 Relacionada a Twist/genética
11.
Mol Syndromol ; 7(3): 153-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27587991

RESUMO

Tetraploid/diploid mosaicism is a rare chromosomal abnormality that is infrequently reported in patients with severe developmental delay, growth retardation, and short life span. Here, we present a 6-year-old patient with severe penoscrotal hypospadias and a coloboma of the left eye but with normal growth, normal psychomotor development, and without dysmorphisms. We considered a local, mosaic sex chromosomal aneuploidy as a possible cause of his genital anomaly and performed karyotyping in cultured fibroblasts from the genital skin, obtained during surgical correction. Tetraploid/diploid (92,XXYY/46,XY) mosaicism was found in 43/57 and 6/26 metaphases in 2 separate cultures, respectively. Buccal smear cells, blood lymphocytes, and cells from urine sediment all showed diploidy. We investigated whether this chromosomal abnormality could be found in other patients with severe hypospadias and karyotyped genital fibroblasts of 6 additional patients but found only low frequencies (<11%) of tetraploid cells, not statistically different from those found in control males with no hypospadias. This is the first time tetraploid mosaicism is found in such a high percentage in a patient without psychomotor retardation, dysmorphisms or growth delay. Although the relationship between this observed mosaicism in cultured cells and the underlying pathogenetic mechanism in penoscrotal hypospadias remains to be determined, our data clearly illustrate the power of cytogenetic techniques in detecting mosaicism compared to next-generation sequencing techniques, in which DNA pooled from multiple cells is used.

12.
J Clin Invest ; 126(8): 2881-92, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27427983

RESUMO

The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ciclo Celular/genética , Quebra Cromossômica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pneumopatias/genética , Alelos , Linfócitos B/citologia , Proliferação de Células , Criança , Pré-Escolar , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Cromossomos/ultraestrutura , Dano ao DNA , Reparo do DNA , Replicação do DNA , Saúde da Família , Feminino , Fibroblastos/metabolismo , Homozigoto , Humanos , Lactente , Masculino , Meiose , Mitose , Mutação de Sentido Incorreto , Linhagem , Recombinação Genética , Síndrome , Linfócitos T/citologia
13.
Mol Syndromol ; 6(5): 210-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26997941

RESUMO

We present 2 cases with multiple de novo supernumerary marker chromosomes (sSMCs), each derived from a different chromosome. In a prenatal case, we found mosaicism for an sSMC(4), sSMC(6), sSMC(9), sSMC(14) and sSMC(22), while a postnatal case had an sSMC(4), sSMC(8) and an sSMC(11). SNP-marker segregation indicated that the sSMC(4) resulted from a maternal meiosis II error in the prenatal case. Segregation of short tandem repeat markers on the sSMC(8) was consistent with a maternal meiosis I error in the postnatal case. In the latter, a boy with developmental/psychomotor delay, autism, hyperactivity, speech delay, and hypotonia, the sSMC(8) was present at the highest frequency in blood. By comparison to other patients with a corresponding duplication, a minimal region of overlap for the phenotype was identified, with CHRNB3 and CHRNA6 as dosage-sensitive candidate genes. These genes encode subunits of nicotinic acetylcholine receptors (nAChRs). We propose that overproduction of these subunits leads to perturbed component stoichiometries with dominant negative effects on the function of nAChRs, as was shown by others in vitro. With the limitation that in each case only one sSMC could be studied, our findings demonstrate that different meiotic errors lead to multiple sSMCs. We relate our findings to age-related aneuploidy in female meiosis and propose that predivision sister-chromatid separation during meiosis I or II, or both, may generate multiple sSMCs.

14.
Case Rep Genet ; 2016: 2861653, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942023

RESUMO

Proximal duplications of chromosome 1q are rare chromosomal abnormalities. Most patients with this condition present with neurological, urogenital, and congenital heart disease and short life expectancy. Mosaicism for trisomy 1q10q23.3 has only been reported once in the literature. Here we discuss a second case: a girl with a postnatal diagnosis of a de novo pure mosaic trisomy 1q1023.3 who has no urogenital or cardiac anomalies.

15.
Clin Case Rep ; 3(6): 489-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26185654

RESUMO

Noninvasive prenatal testing (NIPT) and direct karyotyping of cytotrophoblast were normal for a male fetus, but cultured chorionic villus mesenchymal cells and umbilical cord fibroblasts showed nonmosaic trisomy 18. This observation provides direct evidence for the cytotrophoblastic origin of cell-free fetal DNA and yields a biological explanation for falsely reassuring NIPT results.

16.
Am J Hum Genet ; 96(4): 651-6, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25799107

RESUMO

Chromothripsis represents an extreme class of complex chromosome rearrangements (CCRs) with major effects on chromosomal architecture. Although recent studies have associated chromothripsis with congenital abnormalities, the incidence and pathogenic effects of this phenomenon require further investigation. Here, we analyzed the genomes of three families in which chromothripsis rearrangements were transmitted from a mother to her child. The chromothripsis in the mothers resulted in completely balanced rearrangements involving 8-23 breakpoint junctions across three to five chromosomes. Two mothers did not show any phenotypic abnormalities, although 3-13 protein-coding genes were affected by breakpoints. Unbalanced but stable transmission of a subset of the derivative chromosomes caused apparently de novo complex copy-number changes in two children. This resulted in gene-dosage changes, which are probably responsible for the severe congenital phenotypes of these two children. In contrast, the third child, who has a severe congenital disease, harbored all three chromothripsis chromosomes from his healthy mother, but one of the chromosomes acquired de novo rearrangements leading to copy-number changes. These results show that the human genome can tolerate extreme reshuffling of chromosomal architecture, including breakage of multiple protein-coding genes, without noticeable phenotypic effects. The presence of chromothripsis in healthy individuals affects reproduction and is expected to substantially increase the risk of miscarriages, abortions, and severe congenital disease.


Assuntos
Anormalidades Congênitas/genética , Padrões de Herança/genética , Fases de Leitura Aberta/genética , Fenótipo , Translocação Genética/genética , Variações do Número de Cópias de DNA/genética , Humanos , Análise em Microsséries
17.
Cytogenet Genome Res ; 144(3): 155-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25502965

RESUMO

We describe a 13-year-old boy with developmental delay and proximal muscle weakness who has monosomy 20 mosaicism in blood and skin cells. Because of asymmetric features (difference in foot size, slightly asymmetric intergluteal cleft), we performed extensive cytogenetic studies in peripheral blood and skin. In cultured and uncultured blood lymphocytes, we found 0.9 and 6.5% of cells with monosomy 20, respectively. In addition, 3.3% of uncultured skin fibroblasts and 1.5% of buccal mucosa cells had monosomy 20. This is the fifth patient published with this chromosomal condition. These patients show variable clinical features, ranging from normal to delayed motor and speech development. There is no apparent relation between the percentage of monosomic cells as studied in blood and the severity of the phenotype. This could be due to different degrees of mosaicism in the other tissues and organs, which may vary considerably from patient to patient. The degree of monosomy 20 mosaicism in blood is in most patients below the detection limit of microarray technology. Therefore, this work illustrates the necessity of detailed cytogenetic investigation of multiple cell types in developmentally retarded patients with normal microarray results, especially when there are subtle physical indications of chromosomal mosaicism.


Assuntos
Cariótipo Anormal , Cromossomos Humanos Par 20/genética , Monossomia/genética , Mosaicismo , Adolescente , Fibroblastos/patologia , Humanos , Masculino
18.
Cell Rep ; 9(6): 2001-10, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25497101

RESUMO

Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos/genética , Anormalidades Congênitas/genética , Rearranjo Gênico , Genoma Humano , Mutação em Linhagem Germinativa , Animais , Pontos de Quebra do Cromossomo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , MicroRNAs/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Peixe-Zebra
19.
Mol Cytogenet ; 7(1): 100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25606056

RESUMO

Chromosomal aberrations include translocations, deletions, duplications, inversions, aneuploidies and complex rearrangements. They underlie genetic disease in roughly 15% of patients with multiple congenital abnormalities and/or mental retardation (MCA/MR). In genetic diagnostics, the pathogenicity of chromosomal aberrations in these patients is typically assessed based on criteria such as phenotypic similarity to other patients with the same or overlapping aberration, absence in healthy individuals, de novo occurrence, and protein coding gene content. However, a thorough understanding of the molecular mechanisms that lead to MCA/MR as a result of chromosome aberrations is often lacking. Chromosome aberrations can affect one or more genes in a complex manner, such as by changing the regulation of gene expression, by disrupting exons, and by creating fusion genes. The precise delineation of breakpoints by whole-genome sequencing enables the construction of local genomic architecture and facilitates the prediction of the molecular determinants of the patient's phenotype. Here, we review current methods for breakpoint identification and their impact on the interpretation of chromosome aberrations in patients with MCA/MR. In addition, we discuss opportunities to dissect disease mechanisms based on large-scale genomic technologies and studies in model organisms.

20.
Eur J Med Genet ; 56(7): 346-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23603061

RESUMO

Patients with trisomy or tetrasomy of distal 15q show a recognizable overgrowth syndrome, whereas patients with a monosomy of 15q26 share some degree of pre- and postnatal growth retardation, but differ with respect to facial and skeletal dysmorphisms, congenital heart disease and intellectual development. By reviewing 16 cases with losses of 15q26 we found that the size of the deletion was also not a predictor of the breadth of the phenotypic spectrum, the severity of disease or prognosis of the patient. Although monosomies of 15q26 do not represent a classical contiguous gene syndrome, a few candidate genes for selected features such as proportional growth retardation and cardiac abnormalities have been identified. In 11 out of 16 patients with monosomy of distal 15q variable neurobehavioral phenotypes, including learning difficulties, seizures, attention-deficit-hyperactivity disorder, hearing loss and autism, have been found. We discuss clinical ramifications for cases with a loss of 15q26 detected by prenatal array-CGH.


Assuntos
Anormalidades Múltiplas/diagnóstico , Cromossomos Humanos Par 15/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiência Intelectual/diagnóstico , Monossomia , Fenótipo , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/genética , Feminino , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Humanos , Lactente , Deficiência Intelectual/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...