Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 40(1): 65-72, 2001 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11195391

RESUMO

Isolation of a soluble [NHex4]+ salt has allowed a detailed electrochemical study of the anion alpha-[SMo12O40]2- to be undertaken. Four reversible one-electron-reduction processes are observed in CH2Cl2 solution. Controlled potential electrolysis led to isolation of tetraalkylammonium salts of the one-electron-reduced anion alpha-[SMo12O40]3- and the two-electron-reduced anion alpha-[SMo12O40].4- [SMo12O40]3- is stable to disproportionation in dry solvents (Kdis = 10(-7.4). EPR and magnetic susceptibility data indicate that [SMo12O40]3- is a simple paramagnet (S = 1/2) while [SMo12O40]4- is paramagnetic with the mu eff values decreasing at low temperatures. Solutions of the two-electron-reduced species are EPR silent, but microcrystalline powders show very weak signals. The crystal structure of alpha-[NBu4]3[SMo12O40] has been determined (triclinic P1; a = 13.840(3) A; b = 15.587(4) A; c = 19.370(3) A; alpha = 94.82(2) degrees; beta = 93.10(1) degrees; gamma = 91.05(2) degrees; Z = 2). There is disorder around the C2 axis of the central SO4(2-) tetrahedron. In the presence of aqueous HClO4 (0.045 M) in thf/H2O or MeCN/H2O (98/2 v/v), [SMo12O40]2- exhibits five two-electron-reduction processes. Under these conditions, [SMo12O40]3- protonates and disproportionates into [SMo12O40]2- and the (2e-, 2H+)-reduced anion [H2SMo12O40]2-.

2.
J Org Chem ; 65(14): 4241-50, 2000 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-10891122

RESUMO

The readily prepared gem-dibromocyclopropanes (+/-)-13 and (+/-)-19 each engage in a silver(I)-promoted electrocyclic ring-opening/pi-allyl cation cyclization sequence to deliver the hexahydroindole (+/-)-20, which participates in a Suzuki cross-coupling reaction with arylboronic acid 3 to give the tetracyclic compound (+/-)-21. Catalytic hydrogenation of this last compound proceeds in a completely stereoselective manner to give the saturated analogue (+/-)-24, which undergoes Bischler-Napieralski cyclization on reaction with phosphorus oxychloride. The resulting lactam (+/-)-25 is then reduced with lithium aluminum hydride to give (+/-)-gamma-lycorane [(+/-)-1]. By using (-)-menthyl-derived carbamates 27 and 28, this chemistry has been extended to the synthesis of the (+)- and (-)-modifications of the title compound.


Assuntos
Alcaloides/síntese química , Alcaloides de Amaryllidaceae , Ciclopropanos/síntese química , Dissacarídeos/síntese química , Inibidores Enzimáticos/síntese química , Fucosiltransferases/antagonistas & inibidores , Glicosídeo Hidrolases/antagonistas & inibidores , Animais , Configuração de Carboidratos , Dissacarídeos/química , Dissacarídeos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Modelos Moleculares , Conformação Molecular
3.
Inorg Chem ; 39(5): 881-92, 2000 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12526365

RESUMO

Structural, electrochemical, ESR, and H2O2 reactivity studies are reported for [Mn(dmptacn)Cl]ClO4 (1, dmptacn = 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane) and binuclear complexes of bis(pentadentate) ligands, generated by attaching 2-pyridylmethyl arms to each secondary nitrogen in bis(1,4,7-triazacyclononane) macrocycles and linked by ethyl (tmpdtne, [Mn2(tmpdtne)Cl2](ClO4)2.2DMF, 2), propyl (tmpdtnp, [Mn2(tmpdtnp)Cl2](ClO4)2.3H2O, 3), butyl (tmpdtnb, [Mn2(tmpdtnb)Cl2](ClO4)2.DMF.2H2O, 4), m-xylyl (tmpdtn-m-X, [Mn2(tmpdtn-m-X)-Cl2](ClO4)2, 5) and 2-propanol (tmpdtnp-OH, [Mn2(tmpdtnp-OH)Cl2](ClO4)2, 6) groups. 1 crystallizes in the orthorhombic space group P2(1)2(1)2(1) (No. 19) with a = 7.959(7) A, b = 12.30(1) A, and c = 21.72(2) A; 2, in the monoclinic space group P2(1)/c (No. 14) with a = 11.455(4) A, b = 15.037(6) A, c = 15.887(4) A, and beta = 96.48(2) degrees; 3, in the monoclinic space group P2(1)/c (No. 14) with a = 13.334(2) A, b = 19.926(2) A, c = 18.799(1) A, and beta = 104.328(8) degrees; and [Mn2(tmpdtnb)Cl2](ClO4)2.4DMF.3H2O (4'), in the monoclinic space group P2(1)/n (No. 14) with a = 13.361(3) A, b = 16.807(5) A, c = 14.339(4) A, and beta = 111.14(2) degrees. Significant distortion of the Mn(II) geometry is evident from the angle subtended by the five-membered chelate (ca. 75 degrees) and the angles spanned by trans donor atoms (< 160 degrees). The Mn geometry is intermediate between octahedral and trigonal prismatic, and for complexes 2-4, there is a systematic increase in M...M distance with the length of the alkyl chain. Cyclic and square-wave voltammetric studies indicate that 1 undergoes a 1e- oxidation from Mn(II) to Mn(III) followed by a further oxidation to MnIV at a significantly more positive potential. The binuclear Mn(II) complexes 2-5 are oxidized to the Mn(III) state in two unresolved 1e- processes [MnII2-->MnIIMnIII-->MnIII2] and then to the MnIV state [MnIII2-->MnIIIMnIV-->MnIV2]. For 2, the second oxidation process was partially resolved into two 1e- oxidation processes under the conditions of square-wave voltammetry. In the case of 6, initial oxidation to the MnIII2 state occurs in two overlapping 1e- processes as was found for 2-5, but this complex then undergoes two further clearly separated 1e- oxidation processes to the MnIIIMnIV state at +0.89 V and the MnIV2 state at +1.33 V (vs Fc/Fc+). This behavior is attributed to formation of an alkoxo-bridged complex. Complexes 1-6 were found to catalyze the disproportionation of H2O2. Addition of H2O2 to 2 generated an oxo-bridged mixed-valent MnIIIMnIV intermediate with a characteristic 16-line ESR signal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...