Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5881, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467786

RESUMO

Recently, the underlying mechanism for successful deep learning (DL) was presented based on a quantitative method that measures the quality of a single filter in each layer of a DL model, particularly VGG-16 trained on CIFAR-10. This method exemplifies that each filter identifies small clusters of possible output labels, with additional noise selected as labels outside the clusters. This feature is progressively sharpened with each layer, resulting in an enhanced signal-to-noise ratio (SNR), which leads to an increase in the accuracy of the DL network. In this study, this mechanism is verified for VGG-16 and EfficientNet-B0 trained on the CIFAR-100 and ImageNet datasets, and the main results are as follows. First, the accuracy and SNR progressively increase with the layers. Second, for a given deep architecture, the maximal error rate increases approximately linearly with the number of output labels. Third, similar trends were obtained for dataset labels in the range [3, 1000], thus supporting the universality of this mechanism. Understanding the performance of a single filter and its dominating features paves the way to highly dilute the deep architecture without affecting its overall accuracy, and this can be achieved by applying the filter's cluster connections (AFCC).

2.
Sci Rep ; 13(1): 5423, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080998

RESUMO

The realization of complex classification tasks requires training of deep learning (DL) architectures consisting of tens or even hundreds of convolutional and fully connected hidden layers, which is far from the reality of the human brain. According to the DL rationale, the first convolutional layer reveals localized patterns in the input and large-scale patterns in the following layers, until it reliably characterizes a class of inputs. Here, we demonstrate that with a fixed ratio between the depths of the first and second convolutional layers, the error rates of the generalized shallow LeNet architecture, consisting of only five layers, decay as a power law with the number of filters in the first convolutional layer. The extrapolation of this power law indicates that the generalized LeNet can achieve small error rates that were previously obtained for the CIFAR-10 database using DL architectures. A power law with a similar exponent also characterizes the generalized VGG-16 architecture. However, this results in a significantly increased number of operations required to achieve a given error rate with respect to LeNet. This power law phenomenon governs various generalized LeNet and VGG-16 architectures, hinting at its universal behavior and suggesting a quantitative hierarchical time-space complexity among machine learning architectures. Additionally, the conservation law along the convolutional layers, which is the square-root of their size times their depth, is found to asymptotically minimize error rates. The efficient shallow learning that is demonstrated in this study calls for further quantitative examination using various databases and architectures and its accelerated implementation using future dedicated hardware developments.

3.
Sci Rep ; 13(1): 962, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717568

RESUMO

Advanced deep learning architectures consist of tens of fully connected and convolutional hidden layers, currently extended to hundreds, are far from their biological realization. Their implausible biological dynamics relies on changing a weight in a non-local manner, as the number of routes between an output unit and a weight is typically large, using the backpropagation technique. Here, a 3-layer tree architecture inspired by experimental-based dendritic tree adaptations is developed and applied to the offline and online learning of the CIFAR-10 database. The proposed architecture outperforms the achievable success rates of the 5-layer convolutional LeNet. Moreover, the highly pruned tree backpropagation approach of the proposed architecture, where a single route connects an output unit and a weight, represents an efficient dendritic deep learning.

4.
Sci Rep ; 12(1): 16003, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175466

RESUMO

Real-time sequence identification is a core use-case of artificial neural networks (ANNs), ranging from recognizing temporal events to identifying verification codes. Existing methods apply recurrent neural networks, which suffer from training difficulties; however, performing this function without feedback loops remains a challenge. Here, we present an experimental neuronal long-term plasticity mechanism for high-precision feedforward sequence identification networks (ID-nets) without feedback loops, wherein input objects have a given order and timing. This mechanism temporarily silences neurons following their recent spiking activity. Therefore, transitory objects act on different dynamically created feedforward sub-networks. ID-nets are demonstrated to reliably identify 10 handwritten digit sequences, and are generalized to deep convolutional ANNs with continuous activation nodes trained on image sequences. Counterintuitively, their classification performance, even with a limited number of training examples, is high for sequences but low for individual objects. ID-nets are also implemented for writer-dependent recognition, and suggested as a cryptographic tool for encrypted authentication. The presented mechanism opens new horizons for advanced ANN algorithms.


Assuntos
Encéfalo , Neurônios , Redes Neurais de Computação , Plasticidade Neuronal , Receptores Proteína Tirosina Quinases , Reconhecimento Psicológico
5.
Sci Rep ; 12(1): 6571, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484180

RESUMO

Synaptic plasticity is a long-lasting core hypothesis of brain learning that suggests local adaptation between two connecting neurons and forms the foundation of machine learning. The main complexity of synaptic plasticity is that synapses and dendrites connect neurons in series and existing experiments cannot pinpoint the significant imprinted adaptation location. We showed efficient backpropagation and Hebbian learning on dendritic trees, inspired by experimental-based evidence, for sub-dendritic adaptation and its nonlinear amplification. It has proven to achieve success rates approaching unity for handwritten digits recognition, indicating realization of deep learning even by a single dendrite or neuron. Additionally, dendritic amplification practically generates an exponential number of input crosses, higher-order interactions, with the number of inputs, which enhance success rates. However, direct implementation of a large number of the cross weights and their exhaustive manipulation independently is beyond existing and anticipated computational power. Hence, a new type of nonlinear adaptive dendritic hardware for imitating dendritic learning and estimating the computational capability of the brain must be built.


Assuntos
Dendritos , Plasticidade Neuronal , Dendritos/fisiologia , Aprendizado de Máquina , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
6.
Sci Rep ; 10(1): 19628, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184422

RESUMO

Power-law scaling, a central concept in critical phenomena, is found to be useful in deep learning, where optimized test errors on handwritten digit examples converge as a power-law to zero with database size. For rapid decision making with one training epoch, each example is presented only once to the trained network, the power-law exponent increased with the number of hidden layers. For the largest dataset, the obtained test error was estimated to be in the proximity of state-of-the-art algorithms for large epoch numbers. Power-law scaling assists with key challenges found in current artificial intelligence applications and facilitates an a priori dataset size estimation to achieve a desired test accuracy. It establishes a benchmark for measuring training complexity and a quantitative hierarchy of machine learning tasks and algorithms.

7.
Sci Rep ; 10(1): 9356, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32493994

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Sci Rep ; 10(1): 6923, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327697

RESUMO

Attempting to imitate the brain's functionalities, researchers have bridged between neuroscience and artificial intelligence for decades; however, experimental neuroscience has not directly advanced the field of machine learning (ML). Here, using neuronal cultures, we demonstrate that increased training frequency accelerates the neuronal adaptation processes. This mechanism was implemented on artificial neural networks, where a local learning step-size increases for coherent consecutive learning steps, and tested on a simple dataset of handwritten digits, MNIST. Based on our on-line learning results with a few handwriting examples, success rates for brain-inspired algorithms substantially outperform the commonly used ML algorithms. We speculate this emerging bridge from slow brain function to ML will promote ultrafast decision making under limited examples, which is the reality in many aspects of human activity, robotic control, and network optimization.


Assuntos
Adaptação Fisiológica , Algoritmos , Inteligência Artificial , Encéfalo/fisiologia , Simulação por Computador , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...