Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Ultrason Ferroelectr Freq Control ; 67(12): 2750-2756, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32924939

RESUMO

A 1-GHz full cryogenic oscillator is presented. The oscillator is based on a planar superconductor resonator featuring a loaded Q factor of 200 000 at low microwave input power (unloaded Q of 400 000) and on amplifying parts realized with SiGe bipolar transistors. The circuit is designed with a harmonic balance software and realized on an alumina substrate. A nonlinear model is extracted at low temperature both for the transistor and the resonator. This double nonlinearity increases the difficulty of the oscillator design and implies a strategy to limit the power inside the resonator. The vibrations of the cryogenerator are also a serious issue to get high performance. Finally, the oscillator features a phase noise of -112 dBc/Hz at 100-Hz offset frequency and a phase noise floor of -170 dBc/Hz (100-kHz offset) at a temperature of 65 K.

2.
Artigo em Inglês | MEDLINE | ID: mdl-14995023

RESUMO

Analysis of the quartz properties shows the existence of unexplored angular domains for which Rayleigh waves can be efficiently excited, exhibiting physical characteristics better than the ones of the (ST,X) cut. This paper presents a family of quartz cuts allowing significant improvements of surface acoustic wave (SAW) devices on quartz. A first set of experiments has been performed, confirming the theoretical predictions of the basic properties of SAW on these cuts. A second set of measurements then was achieved to refine the identification of coefficients needed to perform industrial SAW design. A demonstration of the improvements accessible using this new cut is presented. A low loss SAW filter working at 71 MHz has been fabricated using smaller aluminum thickness than that for standard quartz cuts, and exhibiting all the properties required for its industrial implementation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-12075973

RESUMO

The development of efficient computation tools based on mixed analytical and numerical calculation approaches allows precise descriptions and characterizations of surface acoustic waves (SAW) propagation, taking into account realistic electrical and mechanical boundary conditions. As an example, suppression of the leaky SAW, also called pseudo SAW (PSAW), attenuation has been predicted using such tools allowing to explain experimental occurrences for SAW devices on YX cut lithium niobate and lithium tantalate with thick aluminum strip gratings (6% < h/lambda < 10%). In this work, such a theoretical model is used to analyze the evolution of surface waves on standard YX lithium tantalate cuts versus aluminum strip height. It is shown that the surface skimming bulk wave (SSBW), which accompanies the pseudo SAW on such crystal orientations, may be trapped by the grating, exhibiting then a second pseudo SAW behavior when close to the Bragg condition. A device has been designed and fabricated to check these theoretical predictions. The experimental evidence of the existence of the phenomenon allows one to discuss its consequences on more classical devices built on (Y+36 degrees,X) LiTaO3 substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...