Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 258: 124409, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871518

RESUMO

In this work, we elaborated the graphite screen-printed electrodes (SPEs) modification with metal nanoparticles formed as a result of spark discharges produced between a metal wire electrode and SPE that are connected to an Arduino board-based DC high voltage power supply. This sparking device allows, on the one hand, the toposelective formation of NPs of controlled dimensions through a direct and liquid-free approach, and on the other hand, controls the number and energy of the discharges delivered to the electrode surface during a single spark event. This way, the potential damage to the SPE surface by the action of heat evolved during the sparking process is considerably minimized compared with the standard setup in which each spark event consists of multiple electrical discharges. Data demonstrated that the sensing properties of the resulting electrodes are significantly improved compared with those achieved when conventional spark generators are employed, as demonstrated for silver-sparked SPEs that exhibit enhanced sensitivity to riboflavin. Sparked AgNp-SPEs were characterized using scanning electron microscopy and voltammetric measurements in alkaline conditions. The analytical performance of sparked AgNP-SPEs was evaluated by various electrochemical techniques. Under optimum conditions, the detection range for DPV was from 1.9 (LOQ) to 100 nM riboflavin (R2 = 0.997), while a limit of detection (LOD, S/N 3) of 0.56 nM was achieved. The analytical utility is demonstrated for the determination of riboflavin in the real matrices of B-complex pharmaceutical preparation and an energy drink.

2.
Sci Rep ; 12(1): 16665, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198704

RESUMO

We study the interaction of microplasma with viscous liquid in a narrow gap. The reduced surface tension and viscosity of the liquid droplet from local plasma-heating induce a radial fingering. The introduced methodology enables spatially and temporally resolved quantification of dissipated power density and of resulting velocity of the advancing plasma-liquid interface. For two plasma power scenarios, we demonstrate how the irregular distribution of the two parameters leads to microflow, interface stretching, and to primary droplet fragmentation via capillary instability and end pinching.

3.
Phys Rev E ; 101(6-1): 063201, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688537

RESUMO

The interaction of dielectric barrier discharge plasma and silicone-oil liquid droplet in a Hele-Shaw cell was investigated experimentally employing synchronized optical and electrical time-resolved measurements. Temporal development of the destabilization, stretching, and fragmentation of the plasma-liquid interface was studied for the whole event lifespan. The perturbation wavelength and temporal development of fingering speed, plasma-liquid interface length, mean transferred charge, and fractal dimension of the pattern were determined. Recorded changes in the dissipated mean power show a strong correlation to subsequent stretching of the interface, opening new methodological possibilities for future investigations. Our extensive parametric study shows that oil viscosity and applied voltage amplitude both have a significant impact on the interface evolution. Notably, at relatively high voltages the destabilized interface featured properties noticeably diverging from the theoretical prediction of a known model. We propose an explanation based on the change of the liquid viscosity with increased heating at high applied voltage amplitudes.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 2): 055401, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214836

RESUMO

A time-correlated single-photon counting technique was used to verify the formation of a cathode-directed streamer inside the narrow cathode region following the interpulse phase of regular negative corona Trichel pulses in ambient air. A purely experimental approach was used to determine the spatiotemporal development of the electric field during the Trichel pulse rise with an extremely high resolution of 10 µm and tens of picoseconds. The results confirm the positive-streamer mechanism for Trichel pulse formation and provide supportive evidence for the hypothesis that the formation of a primary cathode-directed streamer occurs always in any streamer-initiated breakdown and prebreakdown phenomena associated with cathode spot formation.


Assuntos
Eletrodos , Campos Eletromagnéticos , Gases em Plasma/química , Radiometria/métodos
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046404, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181280

RESUMO

The investigation of striated microdischarges in barrier discharges in argon at atmospheric pressure is reported. Microdischarges were investigated by means of electrical measurements correlated with intensified CCD camera imaging. The scaling law theory known from low-pressure glow discharge diagnostics was applied in order to describe and explain this phenomenon. The investigated microdischarge is characterized as a transient atmospheric-pressure glow discharge with a stratified column. It can be described by similarity parameters i/r≈0.13 A/cm, pr≈5 Torr cm, and 3<λ/r<5 with the current i, pressure p, interval of subsequent striations λ, and radius of the plasma channel r. An attempt to describe the mechanism of creation of a striated structure is given, based on an established model of the spatial electron relaxation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...