Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 83: 383-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826618

RESUMO

Human engineered heart tissues have potential to revolutionize cardiac development research, drug-testing, and treatment of heart disease; however, implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment, we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward, ontomimetic approach, imitating the process of development, requires only a single cell-handling step, provides reproducible results for a range of tested geometries and size scales, and overcomes inherent limitations in cell maintenance and maturation, while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. We demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation, mimicking heart development, and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Pluripotentes/citologia , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Células-Tronco Pluripotentes/efeitos dos fármacos , Polietilenoglicóis/química
2.
Biotechnol Bioeng ; 113(4): 882-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26444682

RESUMO

The development of cell-based treatments for heart disease relies on the creation of functionally mature stem cell-derived cardiomyocytes employing in vitro culture suspension systems, a process which remains a formidable and expensive endeavor. The use of nitric oxide as a signaling molecule during differentiation has demonstrated the potential for creating increased numbers of spontaneously contracting embryoid bodies in culture; however, the effects of nitric oxide signaling on the function and maturation of stem cell-derived cardiomyocytes is not well understood. In this study, the effects of nitric oxide on mouse embryonic stem cell-derived cardiomyocyte contractile activity, protein, and gene expression, and calcium handling were quantified. Embryoid bodies (EBs) formed using the hanging drop method, were treated with the soluble nitric oxide donor S-nitrosocysteine (CysNO) over a period of 18 days in suspension culture and spontaneous contractile activity was assessed. On day 8, selected EBs were dissociated to form monolayers for electrophysiological characterization using calcium transient mapping. Nitric oxide treatment led to increased numbers of stem cell-derived cardiomyocytes (SC-CMs) relative to non-treated EBs after 8 days in suspension culture. Increased incidence of spontaneous contraction and frequency of contraction were observed from days 8-14 in EBs receiving nitric oxide treatment in comparison to control. Expression of cardiac markers and functional proteins was visualized using immunocytochemistry and gene expression was assessed using qPCR. Cardiac-specific proteins were present in both CysNO-treated and control SC-CMs; however, CysNO treatment during differentiation significantly increased ßMHC gene expression in SC-CMs relative to control SC-CMs. Furthermore, increased calcium transient velocity and decreased calcium transient duration was observed for CysNO-treated SC-CMs in comparison to control SC-CMs. Soluble nitric oxide donors, including S-nitrosocysteine, have advantages over other bioactive molecules for use in scalable culture systems in driving cardiac differentiation, since they are inexpensive and the diffusivity of nitric oxide is relatively high. By enabling maintenance of spontaneous contraction in suspension culture and progressing electrophysiological function of resulting SC-CMs toward a more mature phenotype, long-term application of S-nitrosocysteine was shown to be beneficial during cardiac differentiation. Taken together, these results demonstrate the efficiency of nitric oxide as a signaling compound, with implications in the improvement of pluripotent stem cell-derived cardiomyocyte maturation in large-scale culture systems.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Cisteína/análogos & derivados , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , S-Nitrosotióis/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Animais , Meios de Cultura/química , Cisteína/metabolismo , Fenômenos Eletrofisiológicos , Camundongos
3.
Acta Biomater ; 28: 109-120, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407651

RESUMO

Conductive and electroactive polymers have the potential to enhance engineered cardiac tissue function. In this study, an interpenetrating network of the electrically-conductive polymer polypyrrole (PPy) was grown within a matrix of flexible polycaprolactone (PCL) and evaluated as a platform for directing the formation of functional cardiac cell sheets. PCL films were either treated with sodium hydroxide to render them more hydrophilic and enhance cell adhesion or rendered electroactive with PPy grown via chemical polymerization yielding PPy-PCL that had a resistivity of 1.0 ± 0.4 kΩ cm, which is similar to native cardiac tissue. Both PCL and PPy-PCL films supported cardiomyocyte attachment; increasing the duration of PCL pre-treatment with NaOH resulted in higher numbers of adherent cardiomyocytes per unit area, generating cell densities which were more similar to those on PPy-PCL films (1568 ± 126 cells mm(-2), 2880 ± 439 cells mm(-2), 3623 ± 456 cells mm(-2) for PCL with 0, 24, 48 h of NaOH pretreatment, respectively; 2434 ± 166 cells mm(-2) for PPy-PCL). When cardiomyocytes were cultured on the electrically-conductive PPy-PCL, more cells were observed to have peripheral localization of the gap junction protein connexin-43 (Cx43) as compared to cells on NaOH-treated PCL (60.3 ± 4.3% vs. 46.6 ± 5.7%). Cx43 gene expression remained unchanged between materials. Importantly, the velocity of calcium wave propagation was faster and calcium transient duration was shorter for cardiomyocyte monolayers on PPy-PCL (1612 ± 143 µm/s, 910 ± 63 ms) relative to cells on PCL (1129 ± 247 µm/s, 1130 ± 20 ms). In summary, PPy-PCL has demonstrated suitability as an electrically-conductive substrate for culture of cardiomyocytes, yielding enhanced functional properties; results encourage further development of conductive substrates for use in differentiation of stem cell-derived cardiomyocytes and cardiac tissue engineering applications. STATEMENT OF SIGNIFICANCE: Current conductive materials for use in cardiac regeneration are limited by cytotoxicity or cost in implementation. In this manuscript, we demonstrate for the first time the application of a biocompatible, conductive polypyrrole-polycaprolactone film as a platform for culturing cardiomyocytes for cardiac regeneration. This study shows that the novel conductive film is capable of enhancing cell-cell communication through the formation of connexin-43, leading to higher velocities for calcium wave propagation and reduced calcium transient durations among cultured cardiomyocyte monolayers. Furthermore, it was demonstrated that chemical modification of polycaprolactone through alkaline-mediated hydrolysis increased overall cardiomyocyte adhesion. The results of this study provide insight into how cardiomyocytes interact with conductive substrates and will inform future research efforts to enhance the functional properties of cardiomyocytes, which is critical for their use in pharmaceutical testing and cell therapy.


Assuntos
Miócitos Cardíacos/fisiologia , Poliésteres/química , Polímeros/química , Pirróis/química , Animais , Biomimética , Cálcio/metabolismo , Adesão Celular , Linhagem Celular , Camundongos , Microscopia Eletrônica de Varredura , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-24123919

RESUMO

Cardiovascular disease is the leading cause of death worldwide. In the absence of sufficient numbers of organs for heart transplant, alternate approaches for healing or replacing diseased heart tissue are under investigation. Designing biomimetic materials to support these approaches will be essential to their overall success. Strategies for cardiac tissue engineering include injection of cells, implantation of three-dimensional tissue constructs or patches, injection of acellular materials, and replacement of valves. To replicate physiological function and facilitate engraftment into native tissue, materials used in these approaches should have properties that mimic those of the natural cardiac environment. Multiple aspects of the cardiac microenvironment have been emulated using biomimetic materials including delivery of bioactive factors, presentation of cell-specific adhesion sites, design of surface topography to guide tissue alignment and dictate cell shape, modulation of mechanical stiffness and electrical conductivity, and fabrication of three-dimensional structures to guide tissue formation and function. Biomaterials can be engineered to assist in stem cell expansion and differentiation, to protect cells during injection and facilitate their retention and survival in vivo, and to provide mechanical support and guidance for engineered tissue formation. Numerous studies have investigated the use of biomimetic materials for cardiac regeneration. Biomimetic material design will continue to exploit advances in nanotechnology to better recreate the cellular environment and advance cardiac regeneration. Overall, biomimetic materials are moving the field of cardiac regenerative medicine forward and promise to deliver new therapies in combating heart disease.


Assuntos
Materiais Biomiméticos , Miocárdio , Nanomedicina , Medicina Regenerativa , Animais , Doenças Cardiovasculares , Humanos , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...