Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(2): e3001605, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780563

RESUMO

Organismal proteostasis is maintained by intercellular signaling processes including cell nonautonomous stress responses such as transcellular chaperone signaling (TCS). When TCS is activated upon tissue-specific knockdown of hsp-90 in the Caenorhabditis elegans intestine, heat-inducible hsp-70 is induced in muscle cells at the permissive temperature resulting in increased heat stress resistance and lifespan extension. However, our understanding of the molecular mechanism and signaling factors mediating transcellular activation of hsp-70 expression from one tissue to another is still in its infancy. Here, we conducted a combinatorial approach using transcriptome RNA-Seq profiling and a forward genetic mutagenesis screen to elucidate how stress signaling from the intestine to the muscle is regulated. We find that the TCS-mediated "gut-to-muscle" induction of hsp-70 expression is suppressed by HSF-1 and instead relies on transcellular-X-cross-tissue (txt) genes. We identify a key role for the PDZ-domain guanylate cyclase txt-1 and the homeobox transcription factor ceh-58 as signaling hubs in the stress receiving muscle cells to initiate hsp-70 expression and facilitate TCS-mediated heat stress resistance and lifespan extension. Our results provide a new view on cell-nonautonomous regulation of "inter-tissue" stress responses in an organism that highlight a key role for the gut. Our data suggest that the HSF-1-mediated heat shock response is switched off upon TCS activation, in favor of an intercellular stress-signaling route to safeguard survival.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição/metabolismo , Transdução de Sinais , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo
2.
Front Aging ; 3: 897741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821863

RESUMO

In multicellular organisms such as Caenorhabditis elegans, cellular stress stimuli and responses are communicated between tissues to promote organismal health- and lifespan. The nervous system is the predominant regulator of cell nonautonomous proteostasis that orchestrates systemic stress responses to integrate both internal and external stimuli. This review highlights the role of the intestine in mediating cell nonautonomous stress responses and explores recent findings that suggest a central role for the intestine to regulate organismal proteostasis. As a tissue that receives and further transduces signals from the nervous system in response to dietary restriction, heat- and oxidative stress, and hypoxia, we explore evidence suggesting the intestine is a key regulatory organ itself. From the perspective of naturally occurring stressors such as dietary restriction and pathogen infection we highlight how the intestine can function as a key regulator of organismal proteostasis by integrating insulin/IGF-like signaling, miRNA-, neuropeptide- and metabolic signaling to alter distal tissue functions in promoting survival, health- and lifespan.

3.
PLoS Biol ; 19(11): e3001431, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723964

RESUMO

To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell autonomous. We have discovered that, in Caenorhabditis elegans, neuronal heat shock factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR), causes extensive fat remodeling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine and a global shift in the saturation levels of plasma membrane's phospholipids. The observed remodeling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least 6 TAX-2/TAX-4 cyclic guanosine monophosphate (cGMP) gated channel expressing sensory neurons, and transforming growth factor ß (TGF-ß)/bone morphogenetic protein (BMP) are required for signaling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodeling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell nonautonomously coordinate membrane saturation and composition across tissues in a multicellular animal.


Assuntos
Adaptação Fisiológica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Temperatura Alta , Lipídeos/química , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Temperatura Baixa , GMP Cíclico/metabolismo , Glicerofosfolipídeos/metabolismo , Fenótipo , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo
5.
J Vis Exp ; (159)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32538915

RESUMO

This paper presents a high-throughput reverse transcription quantitative PCR (RT-qPCR) assay for Caenorhabditis elegans that is fast, robust, and highly sensitive. This protocol obtains precise measurements of gene expression from single worms or from bulk samples. The protocol presented here provides a novel adaptation of existing methods for complementary DNA (cDNA) preparation coupled to a nanofluidic RT-qPCR platform. The first part of this protocol, named 'Worm-to-CT', allows cDNA production directly from nematodes without the need for prior mRNA isolation. It increases experimental throughput by allowing the preparation of cDNA from 96 worms in 3.5 h. The second part of the protocol uses existing nanofluidic technology to run high-throughput RT-qPCR on the cDNA. This paper evaluates two different nanofluidic chips: the first runs 96 samples and 96 targets, resulting in 9,216 reactions in approximately 1.5 days of benchwork. The second chip type consists of six 12 x 12 arrays, resulting in 864 reactions. Here, the Worm-to-CT method is demonstrated by quantifying mRNA levels of genes encoding heat shock proteins from single worms and from bulk samples. Provided is an extensive list of primers designed to amplify processed RNA for the majority of coding genes within the C. elegans genome.


Assuntos
Caenorhabditis elegans/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Proteínas de Caenorhabditis elegans/genética , Primers do DNA , DNA Complementar , DNA de Helmintos , Proteínas de Choque Térmico/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...