Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 22(2): 695-710, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34383377

RESUMO

We performed gene and genome targeted SNP discovery towards the development of a genome-wide, multispecies genotyping array for tropical pines. Pooled RNA-seq data from shoots of seedlings from five tropical pine species was used to identify transcript-based SNPs resulting in 1.3 million candidate Affymetrix SNP probe sets. In addition, we used a custom 40 K probe set to perform capture-seq in pooled DNA from 81 provenances representing the natural ranges of six tropical pine species in Mexico and Central America resulting in 563 K candidate SNP probe sets. Altogether, 300 K RNA-seq (72%) and 120 K capture-seq (28%) derived SNP probe sets were tiled on a 420 K screening array that was used to genotype 576 trees representing the 81 provenances and commercial breeding material. Based on the screening array results, 50 K SNPs were selected for commercial SNP array production including 20 K polymorphic SNPs for P. patula, P. tecunumanii, P. oocarpa and P. caribaea, 15 K for P. greggii and P. maximinoi, 13 K for P. elliottii and 8K for P. pseudostrobus. We included 9.7 K ancestry informative SNPs that will be valuable for species and hybrid discrimination. Of the 50 K SNP markers, 25% are polymorphic in only one species, while 75% are shared by two or more species. The Pitro50K SNP chip will be useful for population genomics and molecular breeding in this group of pine species that, together with their hybrids, represent the majority of fast-growing tropical and subtropical pine plantations globally.


Assuntos
Pinus , Árvores , Genoma , Genótipo , Pinus/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Árvores/genética
2.
Front Plant Sci ; 12: 638969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719317

RESUMO

Eucalyptus grandis is one of the most important species for hardwood plantation forestry around the world. At present, its commercial deployment is in decline because of pests and pathogens such as Leptocybe invasa gall wasp (Lepto), and often co-occurring fungal stem diseases such as Botryosphaeria dothidea and Teratosphaeria zuluensis (BotryoTera). This study analyzed Lepto, BotryoTera, and stem diameter growth in an E. grandis multi-environmental, genetic trial. The study was established in three subtropical environments. Diameter growth and BotryoTera incidence scores were assessed on 3,334 trees, and Lepto incidence was assessed on 4,463 trees from 95 half-sib families. Using the Eucalyptus EUChip60K SNP chip, a subset of 964 trees from 93 half-sib families were genotyped with 14,347 informative SNP markers. We employed single-step genomic BLUP (ssGBLUP) to estimate genetic parameters in the genetic trial. Diameter and Lepto tolerance showed a positive genetic correlation (0.78), while BotryoTera tolerance had a negative genetic correlation with diameter growth (-0.38). The expected genetic gains for diameter growth and Lepto and BotryoTera tolerance were 12.4, 10, and -3.4%, respectively. We propose a genomic selection breeding strategy for E. grandis that addresses some of the present population structure problems.

3.
Front Genet ; 11: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117444

RESUMO

Sustainable and efficient forestry in a rapidly changing climate is a daunting task. The sessile nature of trees makes adaptation to climate change challenging; thereby, ecological services and economic potential are under risk. Current long-term and costly gene resources management practices have been primarily directed at a few economically important species and are confined to defined ecological boundaries. Here, we present a novel in situ gene-resource management approach that conserves forest biodiversity and improves productivity and adaptation through utilizing basic forest regeneration installations located across a wide range of environments without reliance on structured tree breeding/conservation methods. We utilized 4,267 25- to 35-year-old European larch trees growing in 21 reforestation installations across four distinct climatic regions in Austria. With the aid of marker-based pedigree reconstruction, we applied multi-trait, multi-site quantitative genetic analyses that enabled the identification of broadly adapted and productive individuals. Height and wood density, proxies to fitness and productivity, yielded in situ heritability estimates of 0.23 ± 0.07 and 0.30 ± 0.07, values similar to those from traditional "structured" pedigrees methods. In addition, individual trees selected with this approach are expected to yield genetic response of 1.1 and 0.7 standard deviations for fitness and productivity attributes, respectively, and be broadly adapted to a range of climatic conditions. Genetic evaluation across broad climatic gradients permitted the delineation of suitable reforestation areas under current and future climates. This simple and resource-efficient management of gene resources is applicable to most tree species.

4.
Genetics ; 208(1): 89-95, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29138254

RESUMO

Narrow sense heritability [Formula: see text] is a key concept in quantitative genetics, as it expresses the proportion of the observed phenotypic variation that is transmissible from parents to offspring. [Formula: see text] determines the resemblance among relatives, and the rate of response to artificial and natural selection. Classical methods for estimating [Formula: see text] use random samples of individuals with known relatedness, as well as response to artificial selection, when it is called realized heritability. Here, we present a method for estimating realized [Formula: see text] based on a simple assessment of a random-mating population with no artificial manipulation of the population structure, and derive SE of the estimates. This method can be applied to arbitrary phenotypic segments of the population (for example, the top-ranking p parents and offspring), rather than random samples. It can thus be applied to nonpedigreed random mating populations, where relatedness is determined from molecular markers in the p selected parents and offspring, thus substantially saving on genotyping costs. Further, we assessed the method by stochastic simulations, and, as expected from the mathematical derivation, it provides unbiased estimates of [Formula: see text] We compared our approach to the regression and maximum-likelihood approaches utilizing Galton's dataset on human heights, and all three methods provided identical results.


Assuntos
Genética Populacional , Padrões de Herança , Modelos Genéticos , Algoritmos , Estatura , Simulação por Computador , Humanos , Linhagem , Fenótipo , Característica Quantitativa Herdável , Seleção Genética
5.
Front Plant Sci ; 8: 1810, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093732

RESUMO

Traditional gene-resource management programs for forest trees are long-term endeavors requiring sustained organizational commitment covering extensive landscapes. While successful in maintaining adaptation, genetic diversity and capturing traditional growth attributes gains, these programs are dependent on rigid methods requiring elaborate mating schemes, thus making them slow in coping with climate change challenges. Here, we review the significance of Norway spruce in the boreal region and its current management practices. Next, we discuss opportunities offered by novel technologies and, with the use of computer simulations, we propose and evaluate a dynamic landscape gene-resource management in Norway. Our suggested long-term management approach capitalizes on: (1) existing afforestation activities, natural crosses, and DNA-based pedigree assembly to create structured pedigree for evaluation, thus traditional laborious control crosses are avoided and (2) landscape level genetic evaluation, rather than localized traditional progeny trials, allowing for screening of adapted individuals across multiple environmental gradients under changing climate. These advantages lead to greater genetic response to selection in adaptive traits without the traditional breeding and testing scheme, facilitating conservation of genetic resources within the breeding population of the most important forest tree species in Norway. The use of in situ selection from proven material exposed to realistic conditions over vast territories has not been conducted in forestry before. Our proposed approach is in contrast to worldwide current programs, where genetic evaluation is constrained by the range of environments where testing is conducted, which may be insufficient to capture the broad environmental variation necessary to tackle adaptation under changing climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...