Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Oper Neurosurg (Hagerstown) ; 26(3): 293-300, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819074

RESUMO

BACKGROUND AND OBJECTIVES: Intrathecal (IT) medications are routinely introduced through catheterization of the intraventricular space or subarachnoid space. There has been sporadic use of IT medications delivered directly to the ventricle either by intermittent injection through an external ventricular drain (EVD) or by an Ommaya reservoir with a ventricular catheter. IT medication delivery through EVD has many drawbacks, including the necessary opening of a sterile system, delivery of medication in a bolus form, and requirements to clamp the EVD after medication delivery. Despite these setbacks, IT medications delivered through EVD have been used across a wide range of applications, including antibiotic delivery treatment of vasospasm with nicardipine and delivery of tissue plasminogen activator. METHODS: We used a newly developed active fluid exchange device to treat various severe conditions involved in the cerebral ventricles. Here, we present our treatment protocols and advice on the techniques related to successful active fluid exchange therapy. RESULTS: Seventy patients have been treated with our system with various conditions, including subarachnoid hemorrhage, intraventricular hemorrhage, ventriculitis, and cerebral abscess. Total complication rate was 14% with only 1 catheter occlusion and low rates of hemorrhage, infection, and spinal fluid leak. CONCLUSION: Current continuous IT medication dosages and protocols are based on reports and consensus statements evaluating intermittent instillation of medication boluses. The pharmacokinetics of continuous dosing and the therapeutic and safety profiles of the medications need to be studied in a prospective manner to evaluate the true optimal dosing standards. Furthermore, the ability to deliver continuous, sterile medications directly through an IT route will open new avenues of pharmacotherapy that were previously closed. This report serves as a basic guide for the safe and effective use of the IRRA flow active fluid exchange catheter to deliver IT medications.


Assuntos
Ventrículos Cerebrais , Ativador de Plasminogênio Tecidual , Humanos , Ativador de Plasminogênio Tecidual/uso terapêutico , Estudos Prospectivos , Hemorragia Cerebral , Catéteres
3.
Oper Neurosurg (Hagerstown) ; 25(1): 66-71, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36929766

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is usually performed as an inpatient procedure. The COVID-19 pandemic effected a practice change at our institution with outpatient DBS performed because of limited inpatient and surgical resources. Although this alleviated use of hospital resources, the comparative safety of outpatient DBS surgery is unclear. OBJECTIVE: To compare the safety and incidence of early postoperative complications in patients undergoing DBS procedures in the outpatient vs inpatient setting. METHODS: We retrospectively reviewed all outpatient and inpatient DBS procedures performed by a single surgeon between January 2018 and November 2022. The main outcome measures used for comparison between the 2 groups were total complications, length of stay, rate of postoperative infection, postoperative hemorrhage rate, 30-day emergency department (ED) visits and readmissions, and IV antihypertensive requirement. RESULTS: A total of 44 outpatient DBS surgeries were compared with 70 inpatient DBS surgeries. The outpatient DBS cohort had a shorter mean postoperative stay (4.19 vs 39.59 hours, P = .0015), lower total complication rate (2.3% vs 12.8%, P = .1457), and lower wound infection rate (0% vs 2.9%, P = .52) compared with the inpatient cohort, but the difference in complications was not statistically significant. In the 30-day follow-up period, ED visits were similar between the cohorts (6.8% vs 7.1%, P = .735), but no outpatient DBS patient required readmission, whereas all inpatient DBS patients visiting the ED were readmitted ( P = .155). CONCLUSION: Our study demonstrates that DBS can be safely performed on an outpatient basis with same-day hospital discharge and close continuous monitoring.


Assuntos
COVID-19 , Estimulação Encefálica Profunda , Humanos , Estudos Retrospectivos , Pacientes Internados , Estimulação Encefálica Profunda/efeitos adversos , Pandemias , COVID-19/epidemiologia , COVID-19/etiologia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
4.
Mol Psychiatry ; 27(8): 3501-3509, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672377

RESUMO

People instantaneously evaluate faces with significant agreement on evaluations of social traits. However, the neural basis for such rapid spontaneous face evaluation remains largely unknown. Here, we recorded from 490 neurons in the human amygdala and hippocampus and found that the neuronal activity was associated with the geometry of a social trait space. We further investigated the temporal evolution and modulation on the social trait representation, and we employed encoding and decoding models to reveal the critical social traits for the trait space. We also recorded from another 938 neurons and replicated our findings using different social traits. Together, our results suggest that there exists a neuronal population code for a comprehensive social trait space in the human amygdala and hippocampus that underlies spontaneous first impressions. Changes in such neuronal social trait space may have implications for the abnormal processing of social information observed in some neurological and psychiatric disorders.


Assuntos
Tonsila do Cerebelo , Hipocampo , Humanos , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Fatores Sociológicos
5.
Oper Neurosurg (Hagerstown) ; 23(2): 133-138, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486875

RESUMO

BACKGROUND: The success of deep brain stimulation (DBS) surgery depends on the accuracy of electrode placement. Several factors can affect this such as brain shift, the quality of preoperative planning, and technical factors. It is crucial to determine whether techniques yield accurate lead placement and effective symptom relief. Many of the studies establishing the accuracy of frameless techniques used intraoperative imaging to further refine lead placement. OBJECTIVE: To determine whether awake lead placement without intraoperative imaging can achieve similar minimal targeting error while preserving clinical results. METHODS: Eighty-two trajectories in 47 patients who underwent awake, frameless DBS lead placement with the Fred Haer Corporation STarFix system for essential tremor or Parkinson's disease were analyzed. Neurological testing during lead placement was used to determine appropriate lead locations, and no intraoperative imaging was performed. Accuracy data were compared with previously performed studies. RESULTS: The Euclidean error for the patient cohort was 1.79 ± 1.02 mm, and the Pythagorean error was 1.40 ± 0.95 mm. The percentage symptom improvement evaluated by the Unified Parkinson's Disease Rating Scale for Parkinson's disease or the Fahn-Tolosa-Marin scale for essential tremor was similar to reported values at 58% ± 17.2% and 67.4% ± 24.7%, respectively. The operative time was 95.0 ± 30.3 minutes for all study patients. CONCLUSION: Awake, frameless DBS surgery with the Fred Haer Corporation STarFix system does not require intraoperative imaging for stereotactic accuracy or clinical effectiveness.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Estimulação Encefálica Profunda/métodos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/cirurgia , Resultado do Tratamento , Vigília
6.
J Cell Mol Med ; 25(1): 535-548, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210462

RESUMO

microRNA-155 (miR155) is pro-atherogenic; however, its role in vascular calcification is unknown. In this study, we aim to examine whether miR155 regulates vascular calcification and to understand the underlying mechanism. Quantitative real-time PCR showed that miR155 is highly expressed in human calcific carotid tissue and positively correlated with the expression of osteogenic genes. Wound-healing assay and TUNEL staining showed deletion of miR155 inhibited vascular smooth muscle cell (VSMC) migration and apoptosis. miR155 deficiency attenuated calcification of cultured mouse VSMCs and aortic rings induced by calcification medium, whereas miR155 overexpression promoted VSMC calcification. Compared with wild-type mice, miR155-/- mice showed significant resistance to vitamin D3 induced vascular calcification. Protein analysis showed that miR155 deficiency alleviated the reduction of Rictor, increased phosphorylation of Akt at S473 and accelerated phosphorylation and degradation of FOXO3a in cultured VSMCs and in the aortas of vitamin D3-treated mice. A PI3K inhibitor that suppresses Akt phosphorylation increased, whereas a pan-caspase inhibitor that suppresses apoptosis reduced VSMC calcification; and both inhibitors diminished the protective effects of miR155 deficiency on VSMC calcification. In conclusion, miR155 deficiency attenuates vascular calcification by increasing Akt phosphorylation and FOXO3a degradation, and thus reducing VSMC apoptosis induced by calcification medium.


Assuntos
MicroRNAs/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação/genética , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia
7.
Neurol India ; 68(Supplement): S241-S248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33318358

RESUMO

Spasticity is a major cause of disability following upper motor neuron (UMN) injury. The diagnosis and treatment of spasticity has been a focus of clinicians and researchers alike. In recent years, there have been significant advances both in strategies for spasticity assessment and in the development of novel treatments. Currently, several well-established spasticity management techniques fall into the major categories of physiotherapy, pharmacotherapy, and surgical management. The majority of recent developments in all of these broad categories have focused more on methods of neuromodulation instead of simple symptomatic treatment, attempting to address the underlying cause of spasticity more directly. The following narrative review briefly discusses the causes and clinical assessment of spasticity and also details the wide variety of current and developing treatment approaches for this often-debilitating condition.


Assuntos
Espasticidade Muscular , Humanos , Espasticidade Muscular/terapia
8.
Theranostics ; 10(18): 8365-8381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724475

RESUMO

Our previous studies demonstrated that the natural compound emodin blocks the tumor-promoting feedforward interactions between cancer cells and macrophages, and thus ameliorates the immunosuppressive state of the tumor microenvironment. Since tumor-associated macrophages (TAMs) also affect epithelial mesenchymal-transition (EMT) and cancer stem cell (CSC) formation, here we aimed to test if emodin as a neoadjuvant therapy halts breast cancer metastasis by attenuating TAM-induced EMT and CSC formation of breast cancer cells. Methods: Bioinformatical analysis was performed to examine the correlation between macrophage abundance and EMT/CSC markers in human breast tumors. Cell culture and co-culture studies were performed to test if emodin suppresses TGF-ß1 or macrophage-induced EMT and CSC formation of breast cancer cells, and if it inhibits breast cancer cell migration and invasion. Using mouse models, we tested if short-term administration of emodin before surgical removal of breast tumors halts breast cancer post-surgery metastatic recurrence in the lungs. The effects of emodin on TGF-ß1 signaling pathways in breast cancer cells were examined by western blots and immunofluorescent imaging. Results: Macrophage abundance positively correlates with EMT and CSC markers in human breast tumors. Emodin suppressed TGF-ß1 production in breast cancer cells and macrophages and attenuated TGF-ß1 or macrophage-induced EMT and CSC formation of breast cancer cells. Short-term administration of emodin before surgery halted breast cancer post-surgery metastatic recurrence in the lungs by reducing tumor-promoting macrophages and suppressing EMT and CSC formation in the primary tumors. Mechanistic studies revealed that emodin inhibited both canonical and noncanonical TGF-ß1 signaling pathways in breast cancer cells and suppressed transcription factors key to EMT and CSC. Conclusion: Natural compound emodin suppresses EMT and CSC formation of breast cancer cells by blocking TGF-ß1-mediated crosstalk between TAMs and breast cancer cells. Our study provides evidence suggesting that emodin harbors the potential for clinical development as a new effective and safe agent to halt metastatic recurrence of breast cancer.


Assuntos
Neoplasias da Mama/terapia , Emodina/farmacologia , Neoplasias Pulmonares/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimioterapia Adjuvante/métodos , Técnicas de Cocultura , Biologia Computacional , Ensaios de Seleção de Medicamentos Antitumorais , Emodina/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/imunologia , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Mastectomia , Células-Tronco Neoplásicas/patologia , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia
9.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32487570

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) play key roles in the development of many malignant solid tumors including breast cancer. They are educated in the tumor microenvironment (TME) to promote tumor growth, metastasis, and therapy resistance. However, the phenotype of TAMs is elusive and how to regulate them for therapeutic purpose remains unclear; therefore, TAM-targeting therapies have not yet achieved clinical success. The purposes of this study were to examine the role of transcription factor EB (TFEB) in regulating TAM gene expression and function and to determine if TFEB activation can halt breast tumor development. METHODS: Microarrays were used to analyze the gene expression profile of macrophages (MΦs) in the context of breast cancer and to examine the impact of TFEB overexpression. Cell culture studies were performed to define the mechanisms by which TFEB affects MΦ gene expression and function. Mouse studies were carried out to investigate the impact of MΦ TFEB deficiency or activation on breast tumor growth. Human cancer genome data were analyzed to reveal the prognostic value of TFEB and its regulated genes. RESULTS: TAM-mimic MΦs display a unique gene expression profile, including significant reduction in TFEB expression. TFEB overexpression favorably modulates TAM gene expression through multiple signaling pathways. Specifically, TFEB upregulates suppressor of cytokine signaling 3 (SOCS3) and peroxisome proliferator-activated receptor γ (PPARγ) expression and autophagy/lysosome activities, inhibits NLRP3 (NLR Family Pyrin Domain Containing 3) inflammasome and hypoxia-inducible factor (HIF)-1α mediated hypoxia response, and thereby suppresses an array of effector molecules in TAMs including arginase 1, interleukin (IL)-10, IL-1ß, IL-6 and prostaglandin E2. MΦ-specific TFEB deficiency promotes, while activation of TFEB using the natural disaccharide trehalose halts, breast tumor development by modulating TAMs. Analysis of human patient genome database reveals that expression levels of TFEB, SOCS3 and PPARγ are positive prognostic markers, while HIF-1α is a negative prognostic marker of breast cancer. CONCLUSIONS: Our study identifies TFEB as a master regulator of TAMs in breast cancer. TFEB controls TAM gene expression and function through multiple autophagy/lysosome-dependent and independent pathways. Therefore, pharmacological activation of TFEB would be a promising therapeutic approach to improve the efficacy of existing treatment including immune therapies for breast cancer by favorably modulating TAM function and the TME.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Apoptose , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncoimmunology ; 9(1): 1724761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117588

RESUMO

MicroRNA 155 (miR-155) plays important roles in the regulation of the development and functions of a variety of immune cells. We previously revealed a vital role of miR-155 in regulating the function of dendritic cells (DCs) in breast cancer. miR-155 deficiency in DCs impaired their maturation, migration, cytokine production, and ability to activate T cells. In the current study, to exploit the therapeutic value of miR-155 for breast cancer, we examined the impact of overexpression of miR-155 on antitumor responses generated by DC vaccines. We boosted miR-155 expression in DCs by generating a miR-155 transgenic mouse strain (miR-155tg) or using lentivirus transduction. DCs overexpressing miR-155 exhibited enhanced functions in response to tumor antigens. Using miR-155 overexpressing DCs, we generated a DC vaccine and found that the vaccine resulted in enhanced antitumor immunity against established breast cancers in mice, demonstrated by increased effector T cells in the mice, suppressed tumor growth, and drastically reduced lung metastasis. Our current study suggests that in future DC vaccine development for breast cancer or other solid tumors, introducing forced miR155 overexpression in DCs via various approaches such as viral transduction or nanoparticle delivery, as well as including other adjuvant agents such as TLR ligands or immune stimulating cytokines, may unleash the full therapeutic potential of the DC vaccines.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , MicroRNAs , Animais , Neoplasias da Mama/genética , Células Dendríticas , Feminino , Humanos , Camundongos , MicroRNAs/genética , Linfócitos T
11.
Anticancer Res ; 39(5): 2277-2287, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31092419

RESUMO

BACKGROUND: Low success rates in oncology drug development are prompting re-evaluation of preclinical models, including orthotopic tumor engraftment. In breast cancer models, tumor cells are typically injected into mouse mammary fat pads (MFP). However, this approach bypasses the epithelial microenvironment, potentially altering tumor properties in ways that affect translational application. MATERIALS AND METHODS: Tumors were generated by mammary intraductal (MIND) engraftment of 4T1 carcinoma cells. Growth, histopathology, and molecular features were quantified. RESULTS: Despite growth similar to that of 4T1 MFP tumors, 4T1 MIND tumors exhibit distinct histopathology and increased metastasis. Furthermore, >6,000 transcripts were found to be uniquely up-regulated in 4T1 MIND tumor cells, including genes that drive several cancer hallmarks, in addition to two known therapeutic targets that were not up-regulated in 4T1 MFP tumor cells. CONCLUSION: Engraftment into the epithelial microenvironment generates tumors that more closely recapitulate the complexity of malignancy, suggesting that intraductal adaptation of orthotopic mammary models may be an important step towards improving outcomes in preclinical drug screening and development.


Assuntos
Neoplasias da Mama/genética , Neoplasias Mamárias Animais/genética , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Camundongos , Terapia de Alvo Molecular , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Microambiente Tumoral/genética
13.
Biochem Biophys Res Commun ; 493(1): 598-603, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28867182

RESUMO

Asthma is a chronic inflammatory disease of the airways and the mechanisms are not fully understood. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of monocytes, granulocyte and myeloid cells at early stage of differentiation. They possess phenotypic plasticity and regulate airway inflammation. We recently reported that Kruppel-like factor 4 (KLF4) regulates MDSC differentiation into fibrocytes, emerging effectors in chronic inflammation. However, the role of KLF4 in asthma is not known. Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine and a key initiator of allergic airway inflammation. Given the fact that TSLP promotes Th2 cytokine production that increases MDSC differentiation into fibrocytes, we postulate that KLF4 regulates asthma in a TSLP-dependent manner. In this study, we utilized a model of allergic asthma with ovalbumin challenge (OVA). We found that upon OVA treatment the wild type mice had increased MDSC infiltration into the lung, up-regulation of KLF4 and TSLP gene expression, and higher levels of Th2 cytokines including IL4 and IL13. Consistently, lack of KLF4 expression in monocytes and lung epithelial cells resulted in decreased TSLP expression and lower levels of Th2 cytokines in mice, and fibrocyte generation was compromised. KLF4 deficiency in these cells also led to decreased airway hyperresponsiveness (AHR), a cardinal feature of asthma, as assessed by whole body plethysmography. Moreover, lung fibrosis as measured by trichome staining was attenuated and the population of CD45 + COL1A1+ fibrocytes was diminished in this setting. Together, our results suggest that KLF4 regulates asthma development in a TSLP- and fibrocyte-dependent manner.


Assuntos
Asma/fisiopatologia , Citocinas/imunologia , Fatores de Transcrição Kruppel-Like/imunologia , Pulmão/fisiopatologia , Células Supressoras Mieloides/imunologia , Serina Endopeptidases/imunologia , Doença Aguda , Animais , Asma/patologia , Fator 4 Semelhante a Kruppel , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/patologia
14.
Oncoimmunology ; 6(5): e1312042, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638736

RESUMO

Tumor microenvironment (TME) contains a variety of infiltrating immune cells. Among them, tumor-associated macrophages (TAMs) and their alternative activation contribute greatly to the progression of tumors. The mechanisms governing macrophage polarization in the TME are unclear. Here, we show that in TAMs or macrophages under tumor-conditioned medium treatment, the expression of transcription factor EB (TFEB) is reduced and more of the TFEB protein is in an inactive cytosolic form. Transforming growth factor (TGF)-ß is identified as a main driving force for the reduced TFEB expression and activity in TAMs via activating ERK signaling. TFEB interference in macrophages significantly enhanced their alternative activation, with reduced expression of MHC-II and co-stimulatory molecule CD80, decreased ability to activate T cells, and increased ability to attract tumor cells. When co-inoculated with tumor cells, macrophages with TFEB knockdown significantly enhanced tumor growth with increased infiltration of M2-like macrophages, reduced infiltration of CD8+ T cells, and enhanced angiogenesis in the tumors. Mechanistic studies revealed that TFEB downregulation resulted in macrophage M2 polarization through reducing SOCS3 production and enhancing STAT3 activation. We further demonstrate that the activation of TFEB by hydroxypropyl-ß-cyclodextrin in macrophages suppressed their M2 polarization and tumor-promoting capacity, and that macrophage-specific TFEB overexpression inhibited breast tumor growth in mice. Therefore, our data suggest that TFEB plays critical roles in macrophage polarization, and the downregulation of TFEB expression and activation is an integral part of tumor-induced immune editing in the TME. This study provides a rationale for a new cancer treatment strategy by modulating macrophage polarization through activating TFEB.

15.
Mol Cancer Ther ; 15(8): 1931-42, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27196773

RESUMO

Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPß signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR.


Assuntos
Neoplasias da Mama/metabolismo , Comunicação Celular/efeitos dos fármacos , Emodina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...