Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 13460, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044130

RESUMO

Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.


Assuntos
Acústica , Baleias , Animais , Oceano Atlântico , Geografia , Dinâmica Populacional , Análise Espacial
2.
J Acoust Soc Am ; 142(2): 599, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28863585

RESUMO

Discrimination of bioacoustic signals to the species or population level is critical for using passive acoustic monitoring to study cetacean ecology. Risso's dolphins off southern California have distinctive peaks and notches in their echolocation clicks, but it was unknown whether Risso's dolphins from other geographic areas have similarly distinctive click spectra and whether populations are acoustically distinct. This study investigates using clicks for species and population identification by characterizing the spectral structure of Risso's dolphin echolocation clicks recorded over wide-ranging geographic regions including the U.S. waters of the North Atlantic Ocean, Gulf of Mexico, and North Pacific Ocean; and international waters of the Eastern Tropical Pacific. All recordings with Risso's dolphin clicks exhibited the spectral peak and notch pattern described off southern California, indicating the presence of peak banding patterns is useful for species discrimination. Geographic regions were a significant explanatory factor for variability in the frequencies of click spectral peaks, with relatively higher frequency peaks and notches found off Hawaii compared to California waters and off the southeast U.S. compared to the Gulf of Mexico. In the North Atlantic Ocean, a latitudinal cline in frequencies was evident. Potential causes of acoustic variation within and among acoustic encounters are evaluated.


Assuntos
Acústica , Golfinhos/classificação , Golfinhos/psicologia , Ecolocação , Monitoramento Ambiental/métodos , Vocalização Animal/classificação , Animais , Oceano Atlântico , Golfo do México , Oceano Pacífico , Densidade Demográfica , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Especificidade da Espécie
3.
Mov Ecol ; 2(1): 24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25709833

RESUMO

BACKGROUND: Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of these species. North Atlantic minke whales (Balaenoptera acutorostrata) perform seasonal migrations between high latitude summer feeding and low latitude winter breeding grounds. While the distribution and abundance of the species has been studied across their summer range, data on migration and winter habitat are virtually missing. Acoustic recordings, from 16 different sites from across the North Atlantic, were analyzed to examine the seasonal and geographic variation in minke whale pulse train occurrence, infer information about migration routes and timing, and to identify possible winter habitats. RESULTS: Acoustic detections show that minke whales leave their winter grounds south of 30° N from March through early April. On their southward migration in autumn, minke whales leave waters north of 40° N from mid-October through early November. In the western North Atlantic spring migrants appear to track the warmer waters of the Gulf Stream along the continental shelf, while whales travel farther offshore in autumn. Abundant detections were found off the southeastern US and the Caribbean during winter. Minke whale pulse trains showed evidence of geographic variation, with longer pulse trains recorded south of 40° N. Very few pulse trains were recorded during summer in any of the datasets. CONCLUSION: This study highlights the feasibility of using acoustic monitoring networks to explore migration patterns of pelagic marine mammals. Results confirm the presence of minke whales off the southeastern US and the Caribbean during winter months. The absence of pulse train detections during summer suggests either that minke whales switch their vocal behaviour at this time of year, are absent from available recording sites or that variation in signal structure influenced automated detection. Alternatively, if pulse trains are produced in a reproductive context by males, these data may indicate their absence from the selected recording sites. Evidence of geographic variation in pulse train duration suggests different behavioural functions or use of these calls at different latitudes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...