Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669245

RESUMO

The three-dimensional swimming tracks of motile microorganisms can be used to identify their species, which holds promise for the rapid identification of bacterial pathogens. The tracks also provide detailed information on the cells' responses to external stimuli such as chemical gradients and physical objects. Digital holographic microscopy (DHM) is a well-established, but computationally intensive method for obtaining three-dimensional cell tracks from video microscopy data. We demonstrate that a common neural network (NN) accelerates the analysis of holographic data by an order of magnitude, enabling its use on single-board computers and in real time. We establish a heuristic relationship between the distance of a cell from the focal plane and the size of the bounding box assigned to it by the NN, allowing us to rapidly localise cells in three dimensions as they swim. This technique opens the possibility of providing real-time feedback in experiments, for example by monitoring and adapting the supply of nutrients to a microbial bioreactor in response to changes in the swimming phenotype of microbes, or for rapid identification of bacterial pathogens in drinking water or clinical samples.


Assuntos
Aprendizado Profundo , Holografia , Microscopia , Holografia/métodos , Microscopia/métodos , Imageamento Tridimensional/métodos , Bactérias , Imageamento Quantitativo de Fase
2.
Front Digit Health ; 5: 1297073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125759

RESUMO

Introduction: A proposed Diagnostic AI System for Robot-Assisted Triage ("DAISY") is under development to support Emergency Department ("ED") triage following increasing reports of overcrowding and shortage of staff in ED care experienced within National Health Service, England ("NHS") but also globally. DAISY aims to reduce ED patient wait times and medical practitioner overload. The objective of this study was to explore NHS health practitioners' perspectives and attitudes towards the future use of AI-supported technologies in ED triage. Methods: Between July and August 2022 a qualitative-exploratory research study was conducted to collect and capture the perceptions and attitudes of nine NHS healthcare practitioners to better understand the challenges and benefits of a DAISY deployment. The study was based on a thematic analysis of semi-structured interviews. The study involved qualitative data analysis of the interviewees' responses. Audio-recordings were transcribed verbatim, and notes included into data documents. The transcripts were coded line-by-line, and data were organised into themes and sub-themes. Both inductive and deductive approaches to thematic analysis were used to analyse such data. Results: Based on a qualitative analysis of coded interviews with the practitioners, responses were categorised into broad main thematic-types, namely: trust; current practice; social, legal, ethical, and cultural concerns; and empathetic practice. Sub-themes were identified for each main theme. Further quantitative analyses explored the vocabulary and sentiments of the participants when talking generally about NHS ED practices compared to discussing DAISY. Limitations include a small sample size and the requirement that research participants imagine a prototype AI-supported system still under development. The expectation is that such a system would work alongside the practitioner. Findings can be generalisable to other healthcare AI-supported systems and to other domains. Discussion: This study highlights the benefits and challenges for an AI-supported triage healthcare solution. The study shows that most NHS ED practitioners interviewed were positive about such adoption. Benefits cited were a reduction in patient wait times in the ED, assistance in the streamlining of the triage process, support in calling for appropriate diagnostics and for further patient examination, and identification of those very unwell and requiring more immediate and urgent attention. Words used to describe the system were that DAISY is a "good idea", "help", helpful, "easier", "value", and "accurate". Our study demonstrates that trust in the system is a significant driver of use and a potential barrier to adoption. Participants emphasised social, legal, ethical, and cultural considerations and barriers to DAISY adoption and the importance of empathy and non-verbal cues in patient interactions. Findings demonstrate how DAISY might support and augment human medical performance in ED care, and provide an understanding of attitudinal barriers and considerations for the development and implementation of future triage AI-supported systems.

3.
Front Artif Intell ; 3: 497864, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33733192

RESUMO

Increasingly music has been shown to have both physical and mental health benefits including improvements in cardiovascular health, a link to reduction of cases of dementia in elderly populations, and improvements in markers of general mental well-being such as stress reduction. Here, we describe short case studies addressing general mental well-being (anxiety, stress-reduction) through AI-driven music generation. Engaging in active listening and music-making activities (especially for at risk age groups) can be particularly beneficial, and the practice of music therapy has been shown to be helpful in a range of use cases across a wide age range. However, access to music-making can be prohibitive in terms of access to expertize, materials, and cost. Furthermore the use of existing music for functional outcomes (such as targeted improvement in physical and mental health markers suggested above) can be hindered by issues of repetition and subsequent over-familiarity with existing material. In this paper, we describe machine learning approaches which create functional music informed by biophysiological measurement across two case studies, with target emotional states at opposing ends of a Cartesian affective space (a dimensional emotion space with points ranging from descriptors from relaxation, to fear). Galvanic skin response is used as a marker of psychological arousal and as an estimate of emotional state to be used as a control signal in the training of the machine learning algorithm. This algorithm creates a non-linear time series of musical features for sound synthesis "on-the-fly", using a perceptually informed musical feature similarity model. We find an interaction between familiarity and perceived emotional response. We also report on subsequent psychometric evaluation of the generated material, and consider how these - and similar techniques - might be useful for a range of functional music generation tasks, for example, in nonlinear sound-tracking such as that found in interactive media or video games.

4.
Neural Netw ; 78: 24-35, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26403824

RESUMO

In this paper, we introduce a theoretical basis for a Hadoop-based neural network for parallel and distributed feature selection in Big Data sets. It is underpinned by an associative memory (binary) neural network which is highly amenable to parallel and distributed processing and fits with the Hadoop paradigm. There are many feature selectors described in the literature which all have various strengths and weaknesses. We present the implementation details of five feature selection algorithms constructed using our artificial neural network framework embedded in Hadoop YARN. Hadoop allows parallel and distributed processing. Each feature selector can be divided into subtasks and the subtasks can then be processed in parallel. Multiple feature selectors can also be processed simultaneously (in parallel) allowing multiple feature selectors to be compared. We identify commonalities among the five features selectors. All can be processed in the framework using a single representation and the overall processing can also be greatly reduced by only processing the common aspects of the feature selectors once and propagating these aspects across all five feature selectors as necessary. This allows the best feature selector and the actual features to select to be identified for large and high dimensional data sets through exploiting the efficiency and flexibility of embedding the binary associative-memory neural network in Hadoop.


Assuntos
Redes Neurais de Computação , Estatística como Assunto/métodos , Algoritmos , Bases de Dados Factuais/estatística & dados numéricos
5.
Neural Netw ; 17(3): 441-58, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15037360

RESUMO

This paper evaluates a novel k-nearest neighbour (k-NN) classifier built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and numeric data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall a candidate set of matching records, which are then processed by a conventional k-NN approach to determine the k-best matches. We compare various configurations of the binary approach to a conventional approach for memory overheads, training speed, retrieval speed and retrieval accuracy. We demonstrate the superior performance with respect to speed and memory requirements of the binary approach compared to the standard approach and we pinpoint the optimal configurations.


Assuntos
Inteligência Artificial , Simulação por Computador , Processos Mentais/fisiologia , Redes Neurais de Computação , Algoritmos , Humanos , Memória , Software , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...