Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(33): 21993-22001, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555234

RESUMO

The photoluminescence properties of organic-inorganic pyridinium lead bromide [(pyH)PbBr3] and iodide [(pyH)PbI3] compounds were investigated as a function of temperature. The inorganic substructure consists of face-sharing chains of PbX6 octahedra. Diffuse reflectance spectra of the compounds show low energy absorption features consistent with charge transfer transitions from the PbX3 chains to the pyridinium cations. Both compounds display extremely weak luminescence at room temperature that becomes strongly enhanced upon cooling to 77 K. Broad, featureless low energy emission (λem > 600 nm) in both compounds have large Stokes shifts [1.1 eV for (pyH)PbBr3 and 0.46 eV for (pyH)PbI3] and are assigned to transitions from self-trapped excitons on the inorganic chains whereas emission at higher energy in (pyH)PbBr3 (λem = 450 nm) is assigned to luminescence from a free exciton state. Analysis of data from temperature-dependent luminescence intensity measurements gives activation energies (Ea) for non-radiative decay of the self-trapped excitons in (pyH)PbBr3 and (pyH)PbI3, (Ea = 0.077 eV and 0.103 eV, respectively) and for the free exciton in (pyH)PbBr3 (Ea = 0.010 eV). Analysis of temperature dependent luminescence lifetime data indicates another non-radiative decay process in (pyH)PbI3 at higher temperatures (Ea = 0.17 eV). A large increase in the luminescence lifetime of (pyH)PbI3 below 80 K is consistent with thermalization between triplet sublevels. Analysis of the luminescence power dependence for (pyH)PbI3 shows superlinear response suggestive of quenching by static traps.

2.
ACS Appl Mater Interfaces ; 15(14): 18006-18011, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987567

RESUMO

We report the growth and photophysical characterization of two polar hybrid lead halide phases, methylenedianiline lead iodide and bromide, (MDA)Pb2I6 and (MDA)Pb2Br6, respectively. The phases crystallize in noncentrosymmetric space group Fdd2, which produces a highly oriented molecular dipole moment that gives rise to second harmonic generation (SHG) upon excitation at 1064 nm. While both compositions are isostructural, the size dependence of the SHG signal suggests that the bromide exhibits a stronger phase-matching response whereas the iodide exhibits a significantly weaker non-phase-matching signal. Similarly, fluorescence from (MDA)Pb2Br6 is observed around 630 nm below 75 K whereas only very weak luminescence from (MDA)Pb2I6 can be seen. We attribute the contrasting optical properties to differences in the character of the halide sublattice and postulate that the increased polarizability of the iodide ions acts to screen the local dipole moment, effectively reducing the local electric field in the crystals.

3.
Inorg Chem ; 59(23): 16799-16803, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33164500

RESUMO

Hybrid metal-organic halides are an exciting class of materials that offer the opportunity to examine how fundamental aspects of chemical bonding can influence the structural topology. In this work, we describe how solvent adducts of lead halides can influence the crystallization and subsequent annealing of these hybrid phases. While the size and shape of organic molecules are known to govern the final topology of the hybrid, we show that the affinity of solvent molecules for Pb ions may also play a previously underappreciated role.

4.
Chem Commun (Camb) ; 55(21): 3164-3167, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30801588

RESUMO

We demonstrate that the optical absorption of the vacancy-ordered triple perovskite, Cs3Bi2Br9, can be significantly red-shifted by substituting Br with I while maintaining the layered structural topology. We also present evidence that Br ions prefer to occupy the bridging halide position within the layers in order to minimize strain within the lattice that results from the incorporation of the significantly larger iodide anions into the lattice. These results not only quantify the upper limit for I content in the layered polymorph, but also establish the minimum band gap obtainable from these Bi-based phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...