Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 20(11): e1004082, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011304

RESUMO

BACKGROUND: A low level of cardiorespiratory fitness [CRF; defined as peak oxygen uptake ([Formula: see text]O2peak) or peak power output (PPO)] is a widely reported consequence of spinal cord injury (SCI) and a major risk factor associated with chronic disease. However, CRF can be modified by exercise. This systematic review with meta-analysis and meta-regression aimed to assess whether certain SCI characteristics and/or specific exercise considerations are moderators of changes in CRF. METHODS AND FINDINGS: Databases (MEDLINE, EMBASE, CENTRAL, and Web of Science) were searched from inception to March 2023. A primary meta-analysis was conducted including randomised controlled trials (RCTs; exercise interventions lasting >2 weeks relative to control groups). A secondary meta-analysis pooled independent exercise interventions >2 weeks from longitudinal pre-post and RCT studies to explore whether subgroup differences in injury characteristics and/or exercise intervention parameters explained CRF changes. Further analyses included cohort, cross-sectional, and observational study designs. Outcome measures of interest were absolute (A[Formula: see text]O2peak) or relative [Formula: see text]O2peak (R[Formula: see text]O2peak), and/or PPO. Bias/quality was assessed via The Cochrane Risk of Bias 2 and the National Institute of Health Quality Assessment Tools. Certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Random effects models were used in all meta-analyses and meta-regressions. Of 21,020 identified records, 120 studies comprising 29 RCTs, 67 pre-post studies, 11 cohort, 7 cross-sectional, and 6 observational studies were included. The primary meta-analysis revealed significant improvements in A[Formula: see text]O2peak [0.16 (0.07, 0.25) L/min], R[Formula: see text]O2peak [2.9 (1.8, 3.9) mL/kg/min], and PPO [9 (5, 14) W] with exercise, relative to controls (p < 0.001). Ninety-six studies (117 independent exercise interventions comprising 1,331 adults with SCI) were included in the secondary, pooled meta-analysis which demonstrated significant increases in A[Formula: see text]O2peak [0.22 (0.17, 0.26) L/min], R[Formula: see text]O2peak [2.8 (2.2, 3.3) mL/kg/min], and PPO [11 (9, 13) W] (p < 0.001) following exercise interventions. There were subgroup differences for R[Formula: see text]O2peak based on exercise modality (p = 0.002) and intervention length (p = 0.01), but there were no differences for A[Formula: see text]O2peak. There were subgroup differences (p ≤ 0.018) for PPO based on time since injury, neurological level of injury, exercise modality, and frequency. The meta-regression found that studies with a higher mean age of participants were associated with smaller changes in A[Formula: see text]O2peak and R[Formula: see text]O2peak (p < 0.10). GRADE indicated a moderate level of certainty in the estimated effect for R[Formula: see text]O2peak, but low levels for A[Formula: see text]O2peak and PPO. This review may be limited by the small number of RCTs, which prevented a subgroup analysis within this specific study design. CONCLUSIONS: Our primary meta-analysis confirms that performing exercise >2 weeks results in significant improvements to A[Formula: see text]O2peak, R[Formula: see text]O2peak, and PPO in individuals with SCI. The pooled meta-analysis subgroup comparisons identified that exercise interventions lasting up to 12 weeks yield the greatest change in R[Formula: see text]O2peak. Upper-body aerobic exercise and resistance training also appear the most effective at improving R[Formula: see text]O2peak and PPO. Furthermore, acutely injured, individuals with paraplegia, exercising for ≥3 sessions/week will likely experience the greatest change in PPO. Ageing seemingly diminishes the adaptive CRF responses to exercise training in individuals with SCI. REGISTRATION: PROSPERO: CRD42018104342.


Assuntos
Exercício Físico , Traumatismos da Medula Espinal , Adulto , Humanos , Estudos Transversais , Exercício Físico/fisiologia , Doença Crônica , Estudos Observacionais como Assunto
2.
J Neurophysiol ; 128(5): 1292-1306, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222423

RESUMO

Spinal cord injury (SCI) results in both motor and autonomic impairments, which can negatively affect independence and quality of life and increase morbidity and mortality. Despite emerging evidence supporting the benefits of activity-based training and spinal cord stimulation as two distinct interventions for sensorimotor and autonomic recovery, the combined effects of these modalities are currently uncertain. This scoping review evaluated the effectiveness of paired interventions (exercise + spinal neuromodulation) for improving sensorimotor and autonomic functions in individuals with SCI. Four electronic databases were searched for peer-reviewed manuscripts (Medline, Embase, CINAHL, and EI-compedex Engineering Village) and data were independently extracted by two reviewers using pre-established extraction tables. A total of 15 studies representing 79 participants were included in the review, of which 73% were conducted within the past 5 years. Only two of the studies were randomized controlled studies, while the other 13 studies were case or case-series designs. Compared with activity-based training alone, spinal cord stimulation combined with activity-based training improved walking and voluntary muscle activation, and augmented improvements in lower urinary tract, bowel, resting metabolic rate, peak oxygen consumption, and thermoregulatory function. Spinal neuromodulation in combination with use-dependent therapies may provide greater neurorecovery and induce long-term benefits for both motor and autonomic function beyond the capacity of traditional activity-based therapies. However, evidence for combinational approaches is limited and there is no consensus for outcome measures or optimal protocol parameters, including stimulation settings. Future large-scale randomized trials into paired interventions are warranted to further investigate these preliminary findings.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Qualidade de Vida , Traumatismos da Medula Espinal/terapia , Caminhada , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...