Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 22(6)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33286478

RESUMO

At the battalion level, NATO ROLE1 medical treatment command focuses on the provision of primary health care being the very first physician and higher medical equipment intervention for casualty treatments. ROLE1 has paramount importance in casualty reductions, representing a complex system in current operations. This study deals with an experiment on the optimization of ROLE1 according to the key parameters of the numbers of physicians, the number of ambulances and the distance between ROLE1 and the current battlefield. The very first step in this study is to design and implement a model of current battlefield casualties. The model uses friction data generated from an already executed computer assisted exercise (CAX) while employing a constructive simulation to produce offense and defense scenarios on the flow of casualties. The next step in the study is to design and implement a model representing the transportation to ROLE1, its structure and behavior. The deterministic model of ROLE1, employing a system dynamics simulation paradigm, uses the previously generated casualty flows as the inputs representing human decision-making processes through the recorder CAX events. A factorial experimental design for the ROLE1 model revealed the recommended variants of the ROLE1 structure for both offensive and defensive operations. The overall recommendation is for the internal structure of ROLE1 to have three ambulances and three physicians for any kind of current operation and any distance between ROLE1 and the current battlefield within the limit of 20 min. This study provides novelty in the methodology of casualty estimations involving human decision-making factors as well as the optimization of medical treatment processes through experimentation with the process model.

2.
Entropy (Basel) ; 22(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-33286631

RESUMO

Capability-based planning as an approach to defense planning is an almost infinitely complex engineered system with countless nodes and layers of interdependency, influenced by state and non-state diplomatic activities, information, military and economic actions creating secondary and third order effects. The main output of capability-based planning is the set of capability requirements needed to achieve the expected end-state. One revitalized qualitative technique that allows us to gain insights into unstructured and fuzzy problems in the military is wargaming-in its simplest form this involves manual wargaming. At the same time, there has been a push to bring computer assistance to such wargaming, especially to support umpire adjudication and move more generally towards full automation of human elements in wargames. However, computer assistance in wargaming should not be pushed, regardless of cost, towards quantitative techniques. The objective complexity of a problem often does not allow us to replicate the operational environment with the required fidelity to get credible experimental results. This paper discusses a discovery experiment aiming to verify the concept of applying a qualitative expert system within computer assisted wargaming for developing capability requirements in order to reduce umpire bias and risk associated with their decisions. The innovation here lies in applying system dynamics modelling and simulation paradigms when designing the theoretical model of capability development, which forms the core of the expert system. This new approach enables qualitative comparisons between different sets of proposed capability requirements. Moreover, the expert system allows us to reveal the effects of budget cuts on proposed capability requirement solutions, which the umpire was previously unable to articulate when comparing individual solutions by relying solely on his own knowledge. Players in the wargame validated the proposed concept and suggested how the study might be developed going forward: namely, by enabling users to define their own capabilities and not being limited by a predefined set of capabilities.

3.
Entropy (Basel) ; 22(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-33286806

RESUMO

Resilience is a complex system that represents dynamic behaviours through its complicated structure with various nodes, interrelations, and information flows. Like other international organizations NATO has also been dealing with the measurement of this complex phenomenon in order to have a comprehensive understanding of the civil environment and its impact on military operations. With this ultimate purpose, NATO had developed and executed a prototype model with the system dynamics modelling and simulation paradigm. NATO has created an aggregated resilience model as an upgrade of the prototype one, as discussed within this study. The structure of the model, aggregation mechanism and shock parametrization methodologies used in the development of the model comprise the scope of this study. Analytic Hierarchy Process (AHP), which is a multi-criteria decision-making technique is the methodology that is used for the development of the aggregation mechanism. The main idea of selecting the AHP methodology is its power and usefulness in mitigating bias in the decision-making process, its capability to increase the number of what-if scenarios to be created, and its contribution to the quality of causal explanations with the granularity it provides. The parametrized strategic shock input page, AHP-based weighted resilience and risk parameters input pages, one more country insertion to the model, and the decision support system page enhance the capacity of the prototype model. As part of the model, the decision support system page stands out as the strategic level cockpit where the colour codes give a clear idea at first about the overall situational picture and country-wise resilience and risk status. At the validation workshop, users not only validated the model but also discussed further development opportunities, such as adding more strategic shocks into the model and introduction of new parameters that will be determined by a big data analysis on relevant open source databases. The developed model has the potential to inspire high-level decision-makers dealing with resilience management in other international organizations, such as the United Nations.

4.
Sensors (Basel) ; 20(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455719

RESUMO

This article examines autonomous reconnaissance in a complex urban environment using unmanned aerial vehicles (UAVs). Environments with many buildings and other types of obstacles and/or an uneven terrain are harder to be explored as occlusion of objects of interest may often occur. First, in this article, the problem of autonomous reconnaissance in a complex urban environment via a swarm of UAVs is formulated. Then, the algorithm based on the metaheuristic approach is proposed for a solution. This solution lies in deploying a number of waypoints in the area of interest to be explored, from which the monitoring is performed, and planning the routes for available UAVs among these waypoints so that the monitored area is as large as possible and the operation as short as possible. In the last part of this article, two types of main experiments based on computer simulations are designed to verify the proposed algorithms. The first type focuses on comparing the results achieved on the benchmark instances with the optimal solutions. The second one presents and discusses the results obtained from a number of scenarios, which are based on typical reconnaissance operations in real environments.

5.
Sensors (Basel) ; 19(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480303

RESUMO

Using unmanned robotic systems in military operations such as reconnaissance or surveillance, as well as in many civil applications, is common practice. In this article, the problem of monitoring the specified area of interest by a fleet of unmanned aerial systems is examined. The monitoring is planned via the Cooperative Aerial Model, which deploys a number of waypoints in the area; these waypoints are visited successively by unmanned systems. The original model proposed in the past assumed that the area to be explored is perfectly flat. A new formulation of this model is introduced in this article so that the model can be used in a complex environment with uneven terrain and/or with many obstacles, which may occlude some parts of the area of interest. The optimization algorithm based on the simulated annealing principles is proposed for positioning of waypoints to cover as large an area as possible. A set of scenarios has been designed to verify and evaluate the proposed approach. The key experiments are aimed at finding the minimum number of waypoints needed to explore at least the minimum requested portion of the area. Furthermore, the results are compared to the algorithm based on the lawnmower pattern.

6.
Sensors (Basel) ; 19(12)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238593

RESUMO

In recent years, the use of modern technology in military operations has become standard practice. Unmanned systems play an important role in operations such as reconnaissance and surveillance. This article examines a model for planning aerial reconnaissance using a fleet of mutually cooperating unmanned aerial vehicles to increase the effectiveness of the task. The model deploys a number of waypoints such that, when every waypoint is visited by any vehicle in the fleet, the area of interest is fully explored. The deployment of waypoints must meet the conditions arising from the technical parameters of the sensory systems used and tactical requirements of the task at hand. This paper proposes an improvement of the model by optimizing the number and position of waypoints deployed in the area of interest, the effect of which is to improve the trajectories of individual unmanned systems, and thus increase the efficiency of the operation. To achieve this optimization, a modified simulated annealing algorithm is proposed. The improvement of the model is verified by several experiments. Two sets of benchmark problems were designed: (a) benchmark problems for verifying the proposed algorithm for optimizing waypoints, and (b) benchmark problems based on typical reconnaissance scenarios in the real environment to prove the increased effectiveness of the reconnaissance operation. Moreover, an experiment in the SteelBeast simulation system was also conducted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...