Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 388, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553567

RESUMO

In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Estações do Ano , Reprodução/fisiologia , Vertebrados/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Mamíferos , Tireotropina/metabolismo
2.
J Clin Psychol ; 80(4): 884-899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37921033

RESUMO

OBJECTIVES: In Metacognitive therapy (MCT), homework is used, for example, to increase awareness of thoughts and thought processes, to challenge metacognitive beliefs in real-life situations, and to practice new ways of processing thoughts, feelings, and symptoms. All MCT treatment manuals include homework assignments to be given between each session. METHOD: The following study provides a detailed description of the implementation of homework in a group-based MCT treatment for generalized anxiety disorder (GAD) at an outpatient clinic in Norway. The treatment described in this case consisted of 10 weekly group sessions (7 patients) lasting two hours. RESULTS: This case study demonstrates that group-based MCT can be used to treat GAD and describes how the use of homework can facilitate therapeutic change. CONCLUSION: Overall, the effectiveness of MCT was found to be high. Homework gives patients the opportunity to take charge of their therapy and develop a sense of responsibility for their own progress, both during and after treatment.


Assuntos
Terapia Cognitivo-Comportamental , Metacognição , Psicoterapia de Grupo , Humanos , Transtornos de Ansiedade/psicologia , Emoções
3.
Front Neuroendocrinol ; 67: 101018, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870647

RESUMO

The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant "one cell, one hormone" model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.


Assuntos
Peixes , Mamíferos , Animais , Peixes/genética , Peixes/metabolismo , Hipófise/metabolismo , Hormônios/metabolismo
4.
PLoS One ; 16(1): e0245462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507913

RESUMO

Accumulating evidence indicates that some pituitary cell types are organized in complex networks in both mammals and fish. In this study, we have further investigated the previously described cellular extensions formed by the medaka (Oryzias latipes) luteinizing hormone gonadotropes (Lh cells). Extensions, several cell diameters long, with varicosity-like swellings, were common both in vitro and in vivo. Some extensions approached other Lh cells, while others were in close contact with blood vessels in vivo. Gnrh further stimulated extension development in vitro. Two types of extensions with different characteristics could be distinguished, and were classified as major or minor according to size, origin and cytoskeleton protein dependance. The varicosity-like swellings appeared on the major extensions and were dependent on both microtubules and actin filaments. Immunofluorescence revealed that Lhß protein was mainly located in these swellings and at the extremity of the extensions. We then investigated whether these extensions contribute to network formation and clustering, by following their development in primary cultures. During the first two days in culture, the Lh cells grew long extensions that with time physically attached to other cells. Successively, tight cell clusters formed as cell somas that were connected via extensions migrated towards each other, while shortening their extensions. Laser photolysis of caged Ca2+ showed that Ca2+ signals originating in the soma propagated from the soma along the major extensions, being particularly visible in each swelling. Moreover, the Ca2+ signal could be transferred between densely clustered cells (sharing soma-soma border), but was not transferred via extensions to the connected cell. In summary, Lh gonadotropes in medaka display a complex cellular structure of hormone-containing extensions that are sensitive to Gnrh, and may be used for clustering and possibly hormone release, but do not seem to contribute to communication between cells themselves.


Assuntos
Gonadotrofos/citologia , Oryzias , Animais , Sinalização do Cálcio , Células Cultivadas , Citoesqueleto/metabolismo
5.
J Endocrinol ; 245(1): 21-37, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31977313

RESUMO

Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhß, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Gonadotrofos/metabolismo , Hormônio Luteinizante/metabolismo , Oryzias/metabolismo , Maturidade Sexual/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Hormônio Foliculoestimulante/genética , Expressão Gênica , Gonadotrofos/citologia , Gonadotrofos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Luteinizante/genética , Masculino , Oryzias/genética , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/genética
6.
Gen Comp Endocrinol ; 287: 113344, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794734

RESUMO

Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.


Assuntos
Peixes , Gonadotrofos/metabolismo , Mamíferos , Hipófise/metabolismo , Animais , Maturidade Sexual
7.
Endocrinology ; 160(12): 3018-3032, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621882

RESUMO

Reproductive function in vertebrates is stimulated by GnRH that controls the synthesis and release of the two pituitary gonadotropins, FSH and LH. FSH and LH, which regulate different stages of gonadal development, are produced by two different cell types in the fish pituitary. This is in contrast to the situation in mammals and birds, and it enables investigation of their differential regulation. In the present study, we used fluorescence in situ hybridization to show that Lh cells in adult female medaka express Gnrh receptors, whereas Fsh cells do not. This result was confirmed by patch-clamp recordings and by cytosolic Ca2+ measurements on dispersed pituitary cells, where Lh cells, but not Fsh cells, responded to Gnrh1 by biphasic alteration in action-potential frequencies and cytosolic Ca2+ levels. In contrast, both Fsh and Lh cells are able to respond to Gnrh1 in brain-pituitary tissue slices both electrically and by elevating the cytosolic Ca2+ levels. Using Ca2+ uncaging in combination with patch-clamp recordings and cytosolic Ca2+ measurements, we show that Fsh and Lh cells form homotypic and heterotypic networks in the pituitary. Taken together, these results show that the effects of Gnrh1 on Fsh release in adult female medaka are indirect and probably mediated via Lh cells.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Hipófise/citologia , Animais , Animais Geneticamente Modificados , Comunicação Celular , Feminino , Gonadotrofos/fisiologia , Neurônios/citologia , Oryzias , Hipófise/metabolismo
8.
PLoS Comput Biol ; 15(8): e1006662, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437161

RESUMO

Pituitary endocrine cells fire action potentials (APs) to regulate their cytosolic Ca2+ concentration and hormone secretion rate. Depending on animal species, cell type, and biological conditions, pituitary APs are generated either by TTX-sensitive Na+ currents (INa), high-voltage activated Ca2+ currents (ICa), or by a combination of the two. Previous computational models of pituitary cells have mainly been based on data from rats, where INa is largely inactivated at the resting potential, and spontaneous APs are predominantly mediated by ICa. Unlike in rats, spontaneous INa-mediated APs are consistently seen in pituitary cells of several other animal species, including several species of fish. In the current work we develop a computational model of gonadotropin releasing cells in the teleost fish medaka (Oryzias latipes). The model stands out from previous modeling efforts by being (1) the first model of a pituitary cell in teleosts, (2) the first pituitary cell model that fires sponateous APs that are predominantly mediated by INa, and (3) the first pituitary cell model where the kinetics of the depolarizing currents, INa and ICa, are directly fitted to voltage-clamp data. We explore the firing properties of the model, and compare it to the properties of previous models that fire ICa-based APs. We put a particular focus on how the big conductance K+ current (IBK) modulates the AP shape. Interestingly, we find that IBK can prolong AP duration in models that fire ICa-based APs, while it consistently shortens the duration of the predominantly INa-mediated APs in the medaka gonadotroph model. Although the model is constrained to experimental data from gonadotroph cells in medaka, it may likely provide insights also into other pituitary cell types that fire INa-mediated APs.


Assuntos
Gonadotrofos/metabolismo , Modelos Biológicos , Oryzias/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Biologia Computacional , Simulação por Computador , Feminino , Proteínas de Peixes/metabolismo , Gonadotropinas Hipofisárias/metabolismo , Canais Iônicos/metabolismo , Cinética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo
9.
J Endocrinol ; 240(2): 361-377, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594119

RESUMO

Luteinizing hormone (Lh) and follicle-stimulating hormone (Fsh) control reproduction in vertebrates. Using a transgenic line of medaka, in which green fluorescent protein expression is controlled by the endogenous lhb promotor, we studied development and plasticity of Lh cells, comparing juveniles and adults of both genders. Confocal imaging and 3D reconstruction revealed hypertrophy and hyperplasia of Lh cells in both genders from juvenile to adult stages. We show that Lh cell hyperplasia may be caused by recruitment of existing pituitary cells that start to produce lhb, as evidenced by time lapse recordings of primary pituitary cell cultures, and/or through Lh cell proliferation, demonstrated through a combination of 5-bromo-2'-deoxyuridine incubation experiments and proliferating cell nuclear antigen staining. Proliferating Lh cells do not belong to the classical type of multipotent stem cells, as they do not stain with anti-sox2. Estradiol exposure in vivo increased pituitary cell proliferation, particularly Lh cells, whereas pituitary lhb and gpa expression levels decreased. RNA-seq and in situ hybridization showed that Lh cells express two estrogen receptors, esr1 and esr2b, and the aromatase gene cyp19a1b, suggesting a direct effect of estradiol, and possibly androgens, on Lh cell proliferation. In conclusion, our study reveals a high degree of plasticity in the medaka Lh cell population, resulting from a combination of recruitment and cell proliferation.


Assuntos
Plasticidade Celular/fisiologia , Proliferação de Células/fisiologia , Gonadotrofos/metabolismo , Hipófise/citologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gonadotrofos/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Masculino , Microscopia Confocal , Oryzias/genética , Oryzias/crescimento & desenvolvimento , Oryzias/metabolismo , Imagem com Lapso de Tempo/métodos
10.
J Vis Exp ; (138)2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30176004

RESUMO

Electrophysiological investigations of pituitary cells have been conducted in numerous vertebrate species, but very few in teleost fish. Among these, the clear majority have been performed on dissociated primary cells. To improve our understanding of how teleost pituitary cells, behave in a more biologically relevant environment, this protocol shows how to prepare viable brain-pituitary slices using the small freshwater fish medaka (Oryzias latipes). Making the brain-pituitary slices, pH and osmolality of all solutions were adjusted to values found in body fluids of freshwater fish living at 25 to 28 °C. Following slice preparation, the protocol demonstrates how to conduct electrophysiological recordings using the perforated whole-cell patch-clamp technique. The patch-clamp technique is a powerful tool with unprecedented temporal resolution and sensitivity, allowing investigation of electrical properties from intact whole cells down to single ion channels. Perforated patch is unique in that it keeps the intracellular environment intact preventing regulatory elements in the cytosol from being diluted by the patch pipette electrode solution. In contrast, when performing traditional whole-cell recordings, it was observed that medaka pituitary cells quickly lose their ability to fire action potentials. Among the various perforation techniques available, this protocol demonstrates how to achieve perforation of the patched membrane using the fungicide Amphotericin B.


Assuntos
Encéfalo/fisiologia , Eletrofisiologia/métodos , Técnicas de Patch-Clamp/métodos , Animais , Peixes , Oryzias
11.
J Vis Exp ; (138)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30222142

RESUMO

Primary cell culture is a powerful tool commonly used by scientists to study cellular properties and mechanisms of isolated cells in a controlled environment. Despite vast differences in the physiology between mammals and fish, primary cell culture protocols from fish are often based on mammalian culture conditions, often with only minor modifications. The environmental differences affect not only body temperature, but also blood serum parameters such as osmolality, pH, and pH buffer capacity. As cell culture media and similar working solutions are meant to mimic characteristics of the extracellular fluid and/or blood serum to which a cell is adapted, it is crucial that these parameters are adjusted specifically to the animal in question. The current protocol describes optimized primary culture conditions for medaka (Oryzias latipes). The protocol provides detailed steps on how to isolate and maintain healthy dissociated pituitary cells for more than one week and includes the following steps: 1. the adjustment of the osmolality to the values found in medaka blood plasma, 2. the adjustment of the incubation temperature to normal medaka temperature (here in the aquarium facility), and 3. the adjustment of the pH and bicarbonate buffer to values comparable to other fish species living at similar temperatures. The results presented using the described protocol promote physiologically meaningful results for medaka and can be used as a reference guide by scientists making primary cell cultures from other non-mammalian species.


Assuntos
Adeno-Hipófise/metabolismo , Cultura Primária de Células/métodos , Animais , Peixes , Adeno-Hipófise/citologia
12.
Reproduction ; 154(5): 581-594, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28780570

RESUMO

Depending on the stage of gonad maturation, as well as other factors, gonadal steroids can exert either a positive or negative feedback at the brain and pituitary level. While this has been demonstrated in many teleost species, little is known about the nature of steroid feedback in Gadiform fish. Using an optimized in vitro model system of the Atlantic cod pituitary, the present study investigated the potential effects of two physiologically relevant doses of estradiol, testosterone (TS) or dihydrotestosterone (DHTS) on cell viability and gene expression of gonadotropin subunits (fshb/lhb) and two suggested reproduction-relevant gonadotropin-releasing hormone receptors (gnrhr1b/gnrhr2a) during three stages of sexual maturity. In general, all steroids stimulated cell viability in terms of metabolic activity and membrane integrity. Furthermore, all steroids affected fshb expression, with the effect depending on both the specific steroid, dose and maturity status. Conversely, only DHTS exposure affected lhb levels, and this occurred only during the spawning season. Using single-cell qPCR, co-transcription of gnrhr1b and gnrhr2a was confirmed to both fshb- and lhb- expressing gonadotropes, with gnrhr2a being the most prominently expressed isoform. While steroid exposure had no effect on gnrhr1b expression, all steroids affected gnrhr2a transcript levels in at least one maturity stage. These and previous results from our group point to Gnrhr2a as the main modulator of gonadotropin regulation in cod and that regulation of its gene expression level might function as a direct mechanism for steroid feedback at the pituitary level.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Gadus morhua/genética , Hormônios Esteroides Gonadais/farmacologia , Hormônio Luteinizante Subunidade beta/genética , Receptores LHRH/genética , Animais , Células Cultivadas , Feminino , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Gadus morhua/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Luteinizante Subunidade beta/metabolismo , Masculino , Hipófise/citologia , Hipófise/metabolismo , Receptores LHRH/metabolismo
13.
Methods Mol Biol ; 1521: 169-182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27910048

RESUMO

During the past few decades, gene delivery using recombinant virus has made tremendous progress. With a higher than 80 % transduction efficiency, even in non-dividing cells, viral transduction has become the method of choice for efficient gene transfer into cardiomyocytes. However, in vitro gene delivery is dependent on a robust cell isolation protocol, as prolonged cultivation is needed to initiate gene expression and target specific cellular processes. This chapter describes some of the important steps that need to be considered for successful in vitro gene transfer into adult cardiomyocytes. Included are detailed protocols for isolating cells, maintaining rod shaped cardiomyocytes in culture over several days, and employing adenovirus for gene transduction.


Assuntos
Envelhecimento/fisiologia , Separação Celular/métodos , Técnicas de Transferência de Genes , Miócitos Cardíacos/metabolismo , Animais , Células Cultivadas , Ratos , Soluções
14.
Biochem J ; 473(15): 2413-23, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27247424

RESUMO

NCX1 (Na(+)/Ca(2+) exchanger 1) is an important regulator of intracellular Ca(2+) and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer(68)-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer(68)-PLM-NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1-PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer(68)-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser(68).


Assuntos
Proteínas de Membrana/farmacologia , Peptídeos/farmacologia , Fosfoproteínas/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Animais , Sítios de Ligação , Encéfalo/metabolismo , Células HEK293 , Humanos , Miocárdio/metabolismo , Fosforilação , Ratos , Trocador de Sódio e Cálcio/metabolismo
15.
J Biol Chem ; 291(9): 4561-79, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26668322

RESUMO

The sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na(+)/K(+)-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca(2+) binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5-8Φ1Φ2-X8-9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 1/metabolismo , Processamento de Proteína Pós-Traducional , Trocador de Sódio e Cálcio/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Biologia Computacional , Células HEK293 , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/genética , Especificidade por Substrato
16.
Int J Mol Sci ; 16(11): 26832-49, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26569222

RESUMO

During the last two decades single-cell analysis (SCA) has revealed extensive phenotypic differences within homogenous cell populations. These phenotypic differences are reflected in the stochastic nature of gene regulation, which is often masked by qualitatively and quantitatively averaging in whole tissue analyses. The ability to isolate transcripts and investigate how genes are regulated at the single cell level requires highly sensitive and refined methods. This paper reviews different strategies currently used for SCA, including harvesting, reverse transcription, and amplification of the RNA, followed by methods for transcript quantification. The review provides the historical background to SCA, discusses limitations, and current and future possibilities in this exciting field of research.


Assuntos
Separação Celular/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , RNA Mensageiro/genética , Análise de Célula Única/métodos , Separação Celular/instrumentação , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Escherichia coli/química , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/instrumentação , Humanos , Microdissecção e Captura a Laser/instrumentação , Microdissecção e Captura a Laser/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Fenótipo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Reversa , Análise de Célula Única/instrumentação , Thermus/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-25538682

RESUMO

RFamides (RFa) are neuropeptides involved in many different physiological processes in vertebrates, such as reproductive behavior, pubertal activation of the reproductive endocrine axis, control of feeding behavior, and pain modulation. As research has focused mostly on their role in adult vertebrates, the possible roles of these peptides during development are poorly understood. However, the few studies that exist show that RFa are expressed early in development in different vertebrate classes, perhaps mostly associated with the central nervous system. Interestingly, the related peptide family of FMRFa has been shown to be important for brain development in invertebrates. In a teleost, the Japanese medaka, knockdown of genes in the Kiss system indicates that Kiss ligands and receptors are vital for brain development, but few other functional studies exist. Here, we review the literature of RFa in early vertebrate development, including the possible functional roles these peptides may play.

18.
J Biol Chem ; 289(49): 33984-98, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25336645

RESUMO

Cardiac sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is central to the maintenance of normal Ca(2+) homeostasis and contraction. Studies indicate that the Ca(2+)-activated protease calpain cleaves NCX1. We hypothesized that calpain is an important regulator of NCX1 in response to pressure overload and aimed to identify molecular mechanisms and functional consequences of calpain binding and cleavage of NCX1 in the heart. NCX1 full-length protein and a 75-kDa NCX1 fragment along with calpain were up-regulated in aortic stenosis patients and rats with heart failure. Patients with coronary artery disease and sham-operated rats were used as controls. Calpain co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes and left ventricle lysate. Immunoprecipitations, pull-down experiments, and extensive use of peptide arrays indicated that calpain domain III anchored to the first Ca(2+) binding domain in NCX1, whereas the calpain catalytic region bound to the catenin-like domain in NCX1. The use of bioinformatics, mutational analyses, a substrate competitor peptide, and a specific NCX1-Met(369) antibody identified a novel calpain cleavage site at Met(369). Engineering NCX1-Met(369) into a tobacco etch virus protease cleavage site revealed that specific cleavage at Met(369) inhibited NCX1 activity (both forward and reverse mode). Finally, a short peptide fragment containing the NCX1-Met(369) cleavage site was modeled into the narrow active cleft of human calpain. Inhibition of NCX1 activity, such as we have observed here following calpain-induced NCX1 cleavage, might be beneficial in pathophysiological conditions where increased NCX1 activity contributes to cardiac dysfunction.


Assuntos
Estenose da Valva Aórtica/metabolismo , Calpaína/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Idoso , Sequência de Aminoácidos , Animais , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Sítios de Ligação , Calpaína/genética , Feminino , Células HEK293 , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Ventrículos do Coração/patologia , Humanos , Masculino , Dados de Sequência Molecular , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Cultura Primária de Células , Ligação Proteica , Proteólise , Ratos , Ratos Wistar , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/genética
19.
Mol Cell Endocrinol ; 385(1-2): 18-27, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24145126

RESUMO

Pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are key regulators of vertebrate reproduction. The differential regulation of these hormones, however, is poorly understood and little is known about gonadotrope embryonic development. The different cell types in the vertebrate pituitary develop from common progenitor cells just after gastrulation. Proper development and merging of the anterior and posterior pituitary is dependent upon carefully regulated cell-to-cell interactions, and a suite of signaling pathways with precisely organized temporal and spatial expression patterns, which include transcription factors and their co-activators and repressors. Among the pituitary endocrine cell types, the gonadotropes are the last to develop and become functional. Although much progress has been made during the last decade regarding details of gonadotrope development, the coordinated program for their maturation is not well described. FSH and LH form an integral part of the hypothalamo-pituitary-gonad axis, the main regulator of gonad development and reproduction. Besides regulating gonad development, pre- and early post-natal activity in this axis is thought to be essential for proper development, especially of the central nervous system in mammals. As a means to investigate early functions of FSH and LH in more detail, we have developed a stable transgenic line of medaka with the LH beta subunit gene (lhb) promoter driving green fluorescent protein (Gfp) expression to characterize development of lhb-expressing gonadotropes. The lhb gene is maternally expressed early during embryogenesis. lhb-Expressing cells are initially localized outside the primordial pituitary in the developing gut tube as early as 32 hpf. At hatching, lhb-Gfp is clearly detected in the gut epithelium and in the anterior digestive tract. lhb-Gfp expression later consolidates in the developing pituitary by 2 weeks post-fertilization. This review discusses status of knowledge regarding pituitary morphology and development, with emphasis on gonadotrope cells and gonadotropins during early development, comparing main model species like mouse, zebrafish and medaka, including possible developmental functions of the observed extra pituitary expression of lhb in medaka.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Gonadotrofos/metabolismo , Sistema Hipotálamo-Hipofisário/embriologia , Hormônio Luteinizante/metabolismo , Oryzias/embriologia , Sistema Hipófise-Suprarrenal/embriologia , Peixe-Zebra/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gonadotrofos/citologia , Camundongos , Sistema Hipófise-Suprarrenal/citologia , Proteínas de Peixe-Zebra/biossíntese
20.
Endocrinology ; 154(9): 3319-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836032

RESUMO

Synthesis and release of FSH and LH are differentially regulated by GnRH, but the mechanisms by which this regulation is achieved are not well understood. Teleost fish are powerful models for studying this differential regulation because they have distinct pituitary cells producing either FSH or LH. By using pituitary cultures from Atlantic cod (Gadus morhua), we were able to investigate and compare the electrophysiological properties of fshb- and lhb-expressing cells, identified by single-cell quantitative PCR after recording. Both cell types fired action potentials spontaneously. The relative number of excitable cells was dependent on reproductive season but varied in opposing directions according to season in the 2 cell types. Excitable and quiescent gonadotropes displayed different ion channel repertoires. The dynamics of outward currents and GnRH-induced membrane responses differed between fshb- and lhb-expressing cells, whereas GnRH-induced cytosolic Ca²âº responses were similar. Expression of Ca²âº-activated K⁺ channels also differed with cell type and showed seasonal variation when measured in whole pituitary. The differential presence of these channels corresponds to the differences observed in membrane response to GnRH. We speculate that differences in ion channel expression levels may be involved in seasonal regulation of hormone secretion as well as the differential response to GnRH in LH- and FSH-producing gonadotropes, through differences in excitability and Ca²âº influx.


Assuntos
Proteínas de Peixes/metabolismo , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Gadus morhua/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Gonadotrofos/metabolismo , Hormônio Luteinizante Subunidade beta/metabolismo , Fenômenos Reprodutivos Fisiológicos , Animais , Oceano Atlântico , Sinalização do Cálcio , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Proteínas de Peixes/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Gadus morhua/crescimento & desenvolvimento , Gonadotrofos/citologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Masculino , Noruega , Hipófise/citologia , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...