Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(8): 1421-1435, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36754874

RESUMO

The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in 2019 caused an increased interest in neutralizing antibody tests to determine the immune status of the population. Standard live-virus-based neutralization assays such as plaque-reduction assays or pseudovirus neutralization tests cannot be adapted to the point-of-care (POC). Accordingly, tests quantifying competitive binding inhibition of the angiotensin-converting enzyme 2 (ACE2) receptor to the receptor-binding domain (RBD) of SARS-CoV-2 by neutralizing antibodies have been developed. Here, we present a new platform using sulforhodamine B encapsulating liposomes decorated with RBD as foundation for the development of both a fluorescent, highly feasible high-throughput (HTS) and a POC-ready neutralizing antibody assay. RBD-conjugated liposomes are incubated with serum and subsequently immobilized in an ACE2-coated plate or mixed with biotinylated ACE2 and used in test strip with streptavidin test line, respectively. Polyclonal neutralizing human antibodies were shown to cause complete binding inhibition, while S309 and CR3022 human monoclonal antibodies only caused partial inhibition, proving the functionality of the assay. Both formats, the HTS and POC assay, were then tested using 20 sera containing varying titers of neutralizing antibodies, and a control panel of sera including prepandemic sera and reconvalescent sera from respiratory infections other than SARS-CoV-2. Both assays correlated well with a standard pseudovirus neutralization test (r = 0.847 for HTS and r = 0.614 for POC format). Furthermore, excellent correlation (r = 0.868) between HTS and POC formats was observed. The flexibility afforded by liposomes as signaling agents using different dyes and sizes can hence be utilized in the future for a broad range of multianalyte neutralizing antibody diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Lipossomos , Anticorpos Antivirais , Sistemas Automatizados de Assistência Junto ao Leito , COVID-19/diagnóstico , Anticorpos Neutralizantes
2.
ACS Appl Mater Interfaces ; 12(35): 39533-39540, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805926

RESUMO

Carbon nanofiber (CNF) nanocatalyst hybrids hold great promise in fields such as energy storage, synthetic chemistry, and sensors. Current strategies to generate such hybrids are laborious and utterly incompatible with miniaturization and large-scale production. Instead, this work demonstrates that Ni nanoparticles embedded in three-dimensional (3D) CNFs of any shape and design can be easily prepared using electrospinning, followed by laser carbonization under ambient conditions. Specifically, a solution of nickel acetylacetonate /polyimide is electrospun and subsequently a design is printed via CO2 laser (Ni-laser-induced carbon nanofiber (LCNFs)). This creates uniformly distributed small Ni nanoparticles (∼8 nm) very tightly adhered to the CNF network. Morphological and performance characteristics can be directly influenced by metal content and lasing power and hence adapted for the desired application. Here, Ni-LCNFs are optimized for nonenzymatic electrochemical sensing of glucose with great sensitivity of 2092 µA mM-1 cm-2 and a detection limit down to 0.3 µM. Its selectivity for glucose vs interfering species (ascorbic and uric acid) is essentially governed by the Ni content. Most importantly, this strategy can be adapted to a whole range of metal precursors and hence provide opportunities for such 3D CNF-nanocatalyst hybrids in point-of-care applications where high-performance but also sustainable and low-cost fabrications are of utmost importance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...