Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(10): 103114, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399919

RESUMO

At the Metrology Light Source (MLS), the compact electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB) with a circumference of 48 m, a specific operation mode with two stable closed orbits for stored electrons was realized by transverse resonance island buckets. One of these orbits is closing only after three turns. In combination with single-bunch operation, the new mode was applied for electron time-of-flight spectroscopy with an interval of the synchrotron radiation pulses which is three times the revolution period at the MLS of 160 ns. The achievement is of significant importance for PTB's future programs of angular-resolved electron spectroscopy with synchrotron radiation and similar projects at other compact electron storage rings. The scheme applied here for selecting the photons originating from a particular orbit by optical imaging has been used before in fs slicing applications and may be relevant for the BESSY VSR project of the Helmholtz-Zentrum Berlin.

2.
Opt Express ; 26(26): 34484-34496, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650871

RESUMO

We present the results of the first systematic "round-robin" comparison of far-infrared transmittance spectra measurements, which was performed by five laboratories and piloted by Physikalisch-Technische (PTB). The transmittance spectra of four different samples were measured by the participating laboratories in the 600 cm-1 to 10 cm-1 range (16.67 µm to 1000 µm) in a blind comparison. Different types of instruments, Fourier transform infrared (FT-IR) spectrometers of Michelson type and a laser radiation-based system were used for the transmittance measurements. FT-IR spectrometers are the most popular and commonly used instruments for the spectral characterization of materials in the infrared spectral range, and are well established for quantitative measurements in the mid- and near-infrared spectral ranges. However, obtaining quantitative transmittance measurements in the far-infrared spectral range by means of these instruments is challenging, because it involves weaker radiation sources, stronger diffraction effects, significant radiation originating from the sample itself and temperature gradients inside the spectrometer that may not be given proper consideration. Therefore, this comparison was initiated to test the actual capability of and identify problems with FT-IR transmittance measurements in this spectral region. We discuss the results and the possible reasons for the observed discrepancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...