Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(12): 1862-1874, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36198031

RESUMO

Low-grade serous ovarian cancer (LGSOC) is a rare subtype of epithelial ovarian cancer with high fatality rates in advanced stages due to its chemoresistant properties. LGSOC is characterized by activation of MAPK signaling, and recent clinical trials indicate that the MEK inhibitor (MEKi) trametinib may be a good treatment option for a subset of patients. Understanding MEKi-resistance mechanisms and subsequent identification of rational drug combinations to suppress resistance may greatly improve LGSOC treatment strategies. Both gain-of-function and loss-of-function CRISPR-Cas9 genome-wide libraries were used to screen LGSOC cell lines to identify genes that modulate the response to MEKi. Overexpression of MAML2 and loss of MAP3K1 were identified, both leading to overexpression of the NOTCH target HES1, which has a causal role in this process as its knockdown reversed MEKi resistance. Interestingly, increased HES1 expression was also observed in selected spontaneous trametinib-resistant clones, next to activating MAP2K1 (MEK1) mutations. Subsequent trametinib synthetic lethality screens identified SHOC2 downregulation as being synthetic lethal with MEKis. Targeting SHOC2 with pan-RAF inhibitors (pan-RAFis) in combination with MEKi was effective in parental LGSOC cell lines, in MEKi-resistant derivatives, in primary ascites cultures from patients with LGSOC, and in LGSOC (cell line-derived and patient-derived) xenograft mouse models. We found that the combination of pan-RAFi with MEKi downregulated HES1 levels in trametinib-resistant cells, providing an explanation for the synergy that was observed. Combining MEKis with pan-RAFis may provide a promising treatment strategy for patients with LGSOC, which warrants further clinical validation.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Neoplasias Peritoneais , Feminino , Humanos , Camundongos , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Neoplasias Peritoneais/tratamento farmacológico , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
2.
NPJ Precis Oncol ; 6(1): 47, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768582

RESUMO

Hormone receptor expression is a characteristic of low-grade serous ovarian carcinoma (LGSOC). Studies investigating estrogen receptor (ER) and progesterone receptor (PR) expression levels suggest its prognostic and predictive significance, although their associations with key molecular aberrations are not well understood. As such, we sought to describe the specific genomic profiles associated with different ER/PR expression patterns and survival outcomes in a cohort of patients with advanced disease. The study comprised fifty-five advanced-staged (III/IV) LGSOCs from the Canadian Ovarian Experimental Unified Resource (COEUR) for which targeted mutation sequencing, copy-number aberration, clinical and follow-up data were available. ER, PR, and p16 expression were assessed by immunohistochemistry. Tumors were divided into low and high ER/PR expression groups based on Allred scoring. Copy number analysis revealed that PR-low tumors (Allred score <2) had a higher fraction of the genome altered by copy number changes compared to PR-high tumors (p = 0.001), with cancer genes affected within specific loci linked to altered peptidyl-tyrosine kinase, MAP-kinase, and PI3-kinase signaling. Cox regression analysis showed that ER-high (p = 0.02), PR-high (p = 0.03), stage III disease (p = 0.02), low residual disease burden (p = 0.01) and normal p16 expression (p<0.001) were all significantly associated with improved overall survival. This study provides evidence that genomic aberrations are linked to ER/PR expression in primary LGSOC.

3.
Cancer Res ; 81(7): 1681-1694, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33441310

RESUMO

Low-grade serous ovarian carcinoma (LGSOC) is a rare tumor subtype with high case fatality rates in patients with metastatic disease. There is a pressing need to develop effective treatments using newly available preclinical models for therapeutic discovery and drug evaluation. Here, we use multiomics integration of whole-exome sequencing, RNA sequencing, and mass spectrometry-based proteomics on 14 LGSOC cell lines to elucidate novel biomarkers and therapeutic vulnerabilities. Comparison of LGSOC cell line data with LGSOC tumor data enabled predictive biomarker identification of MEK inhibitor (MEKi) efficacy, with KRAS mutations found exclusively in MEKi-sensitive cell lines and NRAS mutations found mostly in MEKi-resistant cell lines. Distinct patterns of Catalogue of Somatic Mutations in Cancer mutational signatures were identified in MEKi-sensitive and MEKi-resistant cell lines. Deletions of CDKN2A/B and MTAP genes were more frequent in cell lines than tumor samples and possibly represent key driver events in the absence of KRAS/NRAS/BRAF mutations. These LGSOC cell lines were representative models of the molecular aberrations found in LGSOC tumors. For prediction of in vitro MEKi efficacy, proteomic data provided better discrimination than gene expression data. Condensin, minichromosome maintenance, and replication factor C protein complexes were identified as potential treatment targets in MEKi-resistant cell lines. This study suggests that CDKN2A/B or MTAP deficiency may be exploited using synthetically lethal treatment strategies, highlighting the importance of using proteomic data as a tool for molecular drug prediction. Multiomics approaches are crucial to improving our understanding of the molecular underpinnings of LGSOC and applying this information to develop new therapies. SIGNIFICANCE: These findings highlight the utility of global multiomics to characterize LGSOC cell lines as research models, to determine biomarkers of MEKi resistance, and to identify potential novel therapeutic targets.


Assuntos
Biomarcadores Farmacológicos/análise , Cistadenocarcinoma Seroso/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/isolamento & purificação , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Genômica/métodos , Humanos , Metabolômica/métodos , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteômica/métodos , Integração de Sistemas
4.
Gynecol Oncol ; 157(1): 12-20, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31954537

RESUMO

OBJECTIVE: Low-grade serous ovarian carcinomas (LGSC) are frequently ER/PR positive, though the mechanisms by which ER/PR regulate prognosis or anti-estrogen treatment efficacy are poorly understood. We studied ER/PR expression in LGSC tumors and cell lines to evaluate patient outcomes and cellular treatment responses. METHODS: LGSC tumors and patient-derived cell lines were studied from patients with advanced-stage (III/IV) disease. Tumor samples and clinical data were obtained from the Canadian Ovarian Experimental Unified Resource (COEUR-tissue microarray) and the Ovarian Cancer Research (OvCaRe) tissue bank. ER/PR expression was assessed by both Western blot and immunohistochemistry (IHC). Two different IHC scoring systems (simple and Allred) were used. Cox regression was used to identify factors (age, disease residuum, ER/PR status, etc.) associated with progression-free (PFS) and overall survival (OS). Estradiol and tamoxifen proliferation and viability experiments were performed in LGSC cell lines. RESULTS: In 55 LGSC cases studied, median follow-up was 56 months (range 1-227). Fifty-three (96%) cases strongly expressed ER whereas 37 (67%) expressed PR. Cox-regression analysis showed that residuum (p < 0.001) was significantly associated with PFS, whereas both ER Allred score (p = 0.005) and residuum (p = 0.004) were significant for OS. None of the LGSC cell lines expressed PR. Loss of PR and ER expression over time was detected in LGSC tumors and cell lines respectively. Estrogen and tamoxifen treatment did not alter LGSC cell proliferation or viability in-vitro. CONCLUSIONS: In patients with advanced LGSC, higher ER Allred scores were significantly associated with better overall survival. ER/PR expression changed over time in both LGSC tumors and cell lines. Better translational research models are needed to elucidate the molecular mechanisms of ER/PR signalling in LGSC.


Assuntos
Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ovarianas/metabolismo , Receptores de Estrogênio/biossíntese , Receptores de Progesterona/biossíntese , Biomarcadores Tumorais/biossíntese , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Progressão da Doença , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Feminino , Células Hep G2 , Humanos , Imuno-Histoquímica , Células MCF-7 , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Prognóstico , Receptores de Estrogênio/antagonistas & inibidores , Tamoxifeno/farmacologia , Análise Serial de Tecidos
5.
Cancer Cell Int ; 19: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636931

RESUMO

BACKGROUND: Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. METHODS: We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. RESULTS: Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. CONCLUSIONS: KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...