Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(7): e1012266, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995971

RESUMO

Tuberculosis (TB) remains a global public health threat. Understanding the dynamics of host-pathogen interactions within TB granulomas will assist in identifying what leads to the successful elimination of infection. In vitro TB models provide a controllable environment to study these granuloma dynamics. Previously we developed a biomimetic 3D spheroid granuloma model that controls bacteria better than a traditional monolayer culture counterpart. We used agent-based simulations to predict the mechanistic reason for this difference. Our calibrated simulations were able to predict heterogeneous bacterial dynamics that are consistent with experimental data. In one group of simulations, spheroids are found to have higher macrophage activation than their traditional counterparts, leading to better bacterial control. This higher macrophage activation in the spheroids was not due to higher counts of activated T cells, instead fewer activated T cells were able to activate more macrophages due to the proximity of these cells to each other within the spheroid. In a second group of simulations, spheroids again have more macrophage activation but also more T cell activation, specifically CD8+ T cells. This higher level of CD8+ T cell activation is predicted to be due to the proximity of these cells to the cells that activate them. Multiple mechanisms of control were predicted. Simulations removing individual mechanisms show that one group of simulations has a CD4+ T cell dominant response, while the other has a mixed/CD8+ T cell dominant response. Lastly, we demonstrated that in spheroids the initial structure and movement rules work synergistically to reduce bacterial load. These findings provide valuable insights into how the structural complexity of in vitro models impacts immune responses. Moreover, our study has implications for engineering more physiologically relevant in vitro models and advancing our understanding of TB pathogenesis and potential therapeutic interventions.

2.
PLoS One ; 19(3): e0299107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517920

RESUMO

In vitro models of Mycobacterium tuberculosis (Mtb) infection are a valuable tool for examining host-pathogen interactions and screening drugs. With the development of more complex in vitro models, there is a need for tools to help analyze and integrate data from these models. To this end, we introduce an agent-based model (ABM) representation of the interactions between immune cells and bacteria in an in vitro setting. This in silico model was used to simulate both traditional and spheroid cell culture models by changing the movement rules and initial spatial layout of the cells in accordance with the respective in vitro models. The traditional and spheroid simulations were calibrated to published experimental data in a paired manner, by using the same parameters in both simulations. Within the calibrated simulations, heterogeneous outputs are seen for bacterial count and T cell infiltration into the macrophage core of the spheroid. The simulations also predict that equivalent numbers of activated macrophages do not necessarily result in similar bacterial reductions; that host immune responses can control bacterial growth in both spheroid structure dependent and independent manners; that STAT1 activation is the limiting step in macrophage activation in spheroids; and that drug screening and macrophage activation studies could have different outcomes depending on the in vitro culture used. Future model iterations will be guided by the limitations of the current model, specifically which parts of the output space were harder to reach. This ABM can be used to represent more in vitro Mtb infection models due to its flexible structure, thereby accelerating in vitro discoveries.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/microbiologia , Simulação por Computador , Análise de Sistemas , Interações Hospedeiro-Patógeno
3.
Front Immunol ; 13: 1014515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405707

RESUMO

The risk of active tuberculosis disease is 15-21 times higher in those coinfected with human immunodeficiency virus-1 (HIV) compared to tuberculosis alone, and tuberculosis is the leading cause of death in HIV+ individuals. Mechanisms driving synergy between Mycobacterium tuberculosis (Mtb) and HIV during coinfection include: disruption of cytokine balances, impairment of innate and adaptive immune cell functionality, and Mtb-induced increase in HIV viral loads. Tuberculosis granulomas are the interface of host-pathogen interactions. Thus, granuloma-based research elucidating the role and relative impact of coinfection mechanisms within Mtb granulomas could inform cohesive treatments that target both pathogens simultaneously. We review known interactions between Mtb and HIV, and discuss how the structure, function and development of the granuloma microenvironment create a positive feedback loop favoring pathogen expansion and interaction. We also identify key outstanding questions and highlight how coupling computational modeling with in vitro and in vivo efforts could accelerate Mtb-HIV coinfection discoveries.


Assuntos
Coinfecção , Infecções por HIV , HIV-1 , Tuberculose , Humanos , Biologia de Sistemas , Granuloma , Infecções por HIV/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...