Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 54(34): 10030-4, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26136259

RESUMO

We have changed the amino acid set of the genetic code of Escherichia coli by evolving cultures capable of growing on the synthetic noncanonical amino acid L-ß-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa) as a sole surrogate for the canonical amino acid L-tryptophan (Trp). A long-term cultivation experiment in defined synthetic media resulted in the evolution of cells capable of surviving Trp→[3,2]Tpa substitutions in their proteomes in response to the 20,899 TGG codons of the E. coli W3110 genome. These evolved bacteria with new-to-nature amino acid composition showed robust growth in the complete absence of Trp. Our experimental results illustrate an approach for the evolution of synthetic cells with alternative biochemical building blocks.


Assuntos
Alanina/análogos & derivados , Compostos Bicíclicos Heterocíclicos com Pontes/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Evolução Química , Proteoma/química , Alanina/química , Alanina/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteoma/genética , Proteoma/metabolismo
3.
Curr Opin Biotechnol ; 23(5): 751-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22237016

RESUMO

The expansion of the genetic code is gradually becoming a core discipline in Synthetic Biology. It offers the best possible platform for the transfer of numerous chemical reactions and processes from the chemical synthetic laboratory into the biochemistry of living cells. The incorporation of biologically occurring or chemically synthesized non-canonical amino acids into recombinant proteins and even proteomes via reprogrammed protein translation is in the heart of these efforts. Orthogonal pairs consisting of aminoacyl-tRNA synthetase and its cognate tRNA proved to be a general tool for the assignment of certain codons of the genetic code with a maximum degree of chemical liberty. Here, we highlight recent developments that should provide a solid basis for the development of generalist tools enabling a controlled variation of chemical composition in proteins and even proteomes. This will take place in the frame of a greatly expanded genetic code with emancipated codons liberated from the current function or with totally new coding units.


Assuntos
Biotecnologia/métodos , Códon/genética , Escherichia coli/genética , Código Genético/genética , Engenharia Genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Códon de Terminação/genética , Escherichia coli/química , Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
J Pept Sci ; 16(10): 589-95, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20632254

RESUMO

Aequorea victoria green fluorescent protein and its widely used mutants enhanced green fluorescent protein and enhanced cyan fluorescent protein (ECFP) are ideal target proteins to study protein folding. The spectral signals of their chromophores are directly correlated with the folding status of the surrounding protein matrix. Previous studies revealed that tryptophan at position 57 (Trp57) plays a crucial role for the green fluorescent protein's structural and functional integrity. To precisely dissect its role in ECFP folding, we performed its substitution with the isosteric analogs 4-azatryptophan [(4-Aza)Trp] and 7-azatryptophan [(7-Aza)Trp]. Although Trp is moderately hydrophobic, these isosteric analogs are hydrophilic, which makes them an almost ideal tool to study the role of Trp57 in ECFP folding. We achieved high-level expression of both (4-Aza)Trp-ECFP and (7-Aza)Trp-ECFP. However, great portions (70-90%) of protein samples were insoluble and did not contain a maturated chromophore. All attempts to refold the insoluble protein fractions failed. Nevertheless, low amounts of fully labeled, soluble, chromophore containing fractions with altered spectral features were also isolated and identified. The most probable reason for the high yield of misfolding is the introduction of strong hydrophilicity at position 57 which strongly interferes with productive and efficient folding of ECFP. In addition, the results support a strong correlation between translational kinetics of non-canonical amino acids in the ribosome and in vivo folding of the related modified protein sequence.


Assuntos
Proteínas de Fluorescência Verde/química , Interações Hidrofóbicas e Hidrofílicas , Dobramento de Proteína , Triptofano/análogos & derivados , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...