Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 46(4): 971-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25881909

RESUMO

Indirect modulation of cholinergic activity by cholinesterase inhibition is currently a widely established symptomatic treatment for Alzheimer's disease (AD). Selective activation of certain muscarinic receptor subtypes has emerged as an alternative cholinergic-based amyloid-lowering strategy for AD, as selective muscarinic M1 receptor agonists can reduce amyloid-ß (Aß) production by shifting endoproteolytic amyloid-ß protein precursor (AßPP) processing toward non-amyloidogenic pathways. In this study, we addressed the hypothesis that acute stimulation of muscarinic M1 receptors can inhibit Aß production in awake and freely moving AßPP transgenic mice. By combining intracerebral microdialysis with retrodialysis, we determined hippocampal Aß concentrations during simultaneous pharmacological modulation of brain M1 receptor function. Infusion with a M1 receptor agonist AF102B resulted in a rapid reduction of interstitial fluid (ISF) Aß levels while treatment with the M1 antagonist dicyclomine increased ISF Aß levels reaching significance within 120 minutes of treatment. The reduction in Aß levels was associated with PKCα and ERK activation resulting in increased levels of the α-secretase ADAM17 and a shift in AßPP processing toward the non-amyloidogenic processing pathway. In contrast, treatment with the M1 receptor antagonist dicyclomine caused a decrease in levels of phosphorylated ERK that was independent of PKCα, and led to an elevation of ß-secretase levels associated with increased amyloidogenic AßPP processing. The results of this study demonstrate rapid effects of in vivo M1 receptor modulation on the ISF pool of Aß and suggest that intracerebral microdialysis with retrodialysis is a useful technical approach for monitoring acute treatment effects of muscarinic receptor modulators on AßPP/Aß metabolism.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Microdiálise/métodos , Receptor Muscarínico M1/metabolismo , Actinas/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/metabolismo , Diciclomina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Quinuclidinas/farmacologia , Estatísticas não Paramétricas , Tiofenos/farmacologia
2.
PLoS One ; 8(10): e78155, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205136

RESUMO

Soluble oligomeric amyloid ß peptide (Aß) generated from processing of the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's Disease (AD) and through actions at glutamatergic synapses affects excitability and plasticity. The physiological control of APP processing is not fully understood but stimulation of synaptic NMDA receptors (NMDAR) can suppress Aß levels through an ERK-dependent increase in α-secretase activity. AMPA-type glutamate receptors (AMPAR) couple to ERK phosphorylation independently of NMDAR activation raising the possibility that stimulation of AMPAR might similarly promote non-amyloidogenic APP processing. We have tested this hypothesis by investigating whether AMPAR directly regulate APP processing in cultured mouse cortical neurons, by analyzing APP C-terminal fragments (CTFs), soluble APP (sAPP), Aß levels, and cleavage of an APP-GAL4 reporter protein. We report that direct stimulation of AMPAR increases non-amyloidogenic α-secretase-mediated APP processing and inhibits Aß production. Processing was blocked by the matrix metalloproteinase inhibitor TAPI-1 but was only partially dependent on Ca(2+) influx and ERK activity. AMPAR can therefore, be added to the repertoire of receptors that couple to non-amyloidogenic APP processing at glutamatergic synapses and thus pharmacological targeting of AMPAR could potentially influence the development and progression of Aß pathology in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptores de AMPA/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Fosforilação , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Ageing Res Rev ; 12(3): 801-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23570941

RESUMO

Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.


Assuntos
Encéfalo/metabolismo , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Doença de Alzheimer/metabolismo , Animais , Isquemia Encefálica/metabolismo , Camundongos , Receptor Cross-Talk/fisiologia
4.
J Neurochem ; 111(6): 1501-13, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19811606

RESUMO

This is a study of the interaction between the two NMDA neurotransmitter receptor subtypes, NR1/NR2A and NR1/NR2B, and amyloid precursor protein (APP) 695, the major APP variant expressed in neurones. APP695 co-immunoprecipitated with assembled NR1-1a/NR2A and NR1-1a/NR2B NMDA receptors following expression in mammalian cells. Single NR1-1a, NR1-2a, NR1-4b(c-Myc), or NR2 subunit transfections revealed that co-association of APP695 with assembled NMDA receptors was mediated via the NR1 subunit; it was independent of the NR1 C1, C2, and C2' cassettes and, the use of an NR1-2a(c-Myc)-trafficking mutant suggested that interaction between the two proteins occurs in the endoplasmic reticulum. The use of antibodies directed against extracellular and intracellular NR2 subunit epitopes for immunoprecipitations suggested that APP/NMDA receptor association was mediated via N-terminal domains. Anti-APP antibodies immunoprecipitated NR1, NR2A, and NR2B immunoreactive bands from detergent extracts of mammalian brain; reciprocally, anti-NR1 or anti-NR2A antibodies co-immunoprecipitated APP immunoreactivity. Immune pellets from brain were sensitive to endoglycosidase H suggesting that, as for heterologous expression, APP and NMDA receptor association occurs in the endoplasmic reticulum. Co-expression of APP695 in mammalian cells resulted in enhanced cell surface expression of both NR1-1a/NR2A and NR1-1a/NR2B NMDA receptors with no increase in total subunit expression. These findings are further evidence for a role of APP in intracellular trafficking mechanisms. Further, they provide a link between two major brain proteins that have both been implicated in Alzheimer's disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular Transformada/ultraestrutura , Membrana Celular/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Imunoprecipitação/métodos , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/farmacologia , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/farmacologia , Subunidades Proteicas/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Transfecção/métodos
5.
J Neurosci ; 29(14): 4442-60, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19357271

RESUMO

Altered amyloid precursor protein (APP) processing leading to increased production and oligomerization of Abeta may contribute to Alzheimer's disease (AD). Understanding how APP processing is regulated under physiological conditions may provide new insights into AD pathogenesis. Recent reports demonstrate that excitatory neural activity regulates APP metabolism and Abeta levels, although understanding of the molecular mechanisms involved is incomplete. We have investigated whether NMDA receptor activity regulates APP metabolism in primary cultured cortical neurons. We report that a pool of APP is localized to the postsynaptic compartment in cortical neurons and observed partial overlap of APP with both NR1 and PSD-95. NMDA receptor stimulation increased nonamyloidogenic alpha-secretase-mediated APP processing, as measured by a 2.5-fold increase in cellular alpha-C-terminal fragment (C83) levels after glutamate or NMDA treatment. This increase was blocked by the NMDA receptor antagonists d-AP5 and MK801 but not by the AMPA receptor antagonist CNQX or the L-type calcium channel blocker nifedipine, was prevented by chelation of extracellular calcium, and was blocked by the alpha-secretase inhibitor TAPI-1. Cotreatment of cortical neurons with bicuculline and 4-AP, which stimulates glutamate release and activates synaptic NMDA receptors, evoked an MK801-sensitive increase in C83 levels. Furthermore, NMDA receptor stimulation caused a twofold increase in the amount of soluble APP detected in the neuronal culture medium. Finally, NMDA receptor activity inhibited both Abeta1-40 release and Gal4-dependent luciferase activity induced by beta-gamma-secretase-mediated cleavage of an APP-Gal4 fusion protein. Altogether, these data suggest that calcium influx through synaptic NMDA receptors promotes nonamyloidogenic alpha-secretase-mediated APP processing.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/biossíntese , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/fisiologia , Peptídeos beta-Amiloides/genética , Animais , Células Cultivadas , Humanos , Camundongos , Fragmentos de Peptídeos/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...