Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; : 1-10, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830228

RESUMO

The National Institute for Occupational Safety and Health recommends the use of nitrile gloves with a minimum thickness of 5.0 ± 2.0 mil [0.127 ± 0.051 millimeters] in situations where it is suspected or known that fentanyl or other illicit drugs are present. However, there is limited data available on fentanyl permeation through gloves. Current test methods used to measure fentanyl permeation do not consider the effect of glove fit and flexion. Furthermore, first responders need to have PPE readily available in the field, and storage conditions may affect the protective performance of the gloves. The objective of this study was to evaluate the effects of glove stretch and storage temperatures on glove durability and barrier performance against fentanyl. Nine nitrile glove models previously shown to be resistant to fentanyl permeation were selected for this investigation. These nine models were stretched 25% in one linear direction, to consider glove fit and flexion, and tested against fentanyl hydrochloride permeation. Additionally, four of the nine glove models were stored at 48 °C, 22 °C, and -20 °C, and evaluated for tensile strength, ultimate elongation, and puncture resistance after up to 16 wk of storage and fentanyl permeation after up to 8 wk of storage. At least one sample for six of the nine tested models had maximum permeation over the test method fail threshold when stretched. The tested storage temperatures showed no effect on glove tensile strength, ultimate elongation, and puncture resistance. The findings of this study can be used to inform PPE recommendations, with consideration to storage practices and proper sizing for first responders with potential exposure to fentanyl and other illicit drugs. The results of this study can be used to assess the need for new standard test methods to evaluate the barrier performance of gloves and shelf-life determination with consideration to glove fit.

2.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822624

RESUMO

AIMS: To assess low concentration hydrogen peroxide (LCHP) (H2O2) vapor dispersed with a home humidifier for its ability to decontaminate vehicle interiors contaminated with Bacillus anthracis surrogate Bacillus atrophaeus spores. METHODS AND RESULTS: Efficacy of a vaporized 3% H2O2 solution was evaluated for liquid volumes, on/off vehicle heating, ventilation, and air conditioning (HVAC) system operations, and temperatures that ranged from 5 to 27°C. Survival of the spores was assessed by quantification of remaining viable spores with efficacy quantified in terms of mean log10 reduction. Decontamination efficacy after the 6-day dwell time increased when the 3% H2O2 liquid volume was doubled, increasing from 4-of-10 to 10-of-10 nondetects (zero colonies counted using standard dilution and filter plating) inside the vehicle cabin. Recirculating cabin air through the HVAC system during decontamination decreased efficacy to 6-of-10 non-detects. While no 6-log10 reduction in viable spores was observed on the cabin filter with the cabin filter kept in place, a 6-log10 reduction was achieved after its removal and placement in the cabin during treatment. CONCLUSIONS: Results from this study allow for informed decisions on the use of LCHP vapor as an effective decontamination approach for vehicle interiors.


Assuntos
Bacillus anthracis , Bacillus , Peróxido de Hidrogênio/farmacologia , Descontaminação/métodos , Esporos Bacterianos
3.
Environ Monit Assess ; 195(2): 257, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595073

RESUMO

Analytical methods exist to detect biothreat agents in environmental samples during a response to biological contamination incidents. However, the coastal zone facilities and assets of the US Coast Guard (USCG), including response boats in diverse geographical areas and maritime environmental conditions, can pose complex and unique challenges for adapting existing analytical detection methods. The traditional culture (TC) and the rapid viability polymerase chain reaction (RV-PCR) methods were evaluated for their compatibility for maritime environmental surface and grab sample analysis to detect spores of Bacillus thuringiensis subspecies kurstaki (Btk), a surrogate for Bacillus anthracis. The representative samples collected from a USCG installation included surfaces, such as aluminum on boats, nonskid tread on decks of watercraft, computer touchscreens, and concrete piers, and grab samples of boat washdown water, soil, vegetation, and gravel from surrounding areas. Replicate samples were spiked with Btk spores at two to three tenfold increasing levels and analyzed. Out of a total of 150 samples collected and analyzed, the TC method gave 10 false-positive and 19 false-negative results, while the RV-PCR method-based analysis resulted in 0 false-positive and 26 false-negative results. An abundance of microbial background and particulates in some samples interfered with true results, while both methods gave similar results for samples with low microbial background and particulates. Improved and high-throughput sample processing methods are needed for analysis of complex environmental samples.


Assuntos
Bacillus anthracis , Bacillus thuringiensis , Bacillus anthracis/genética , Esporos Bacterianos , Monitoramento Ambiental , Reação em Cadeia da Polimerase/métodos
4.
Environ Monit Assess ; 194(10): 789, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104633

RESUMO

Large area sampling approaches have been developed and implemented by the US Environmental Protection Agency (EPA) to increase sample sizes, and potentially representativeness, in outdoor urban environments (e.g., concrete, asphalt, grass/landscaping). These sampling approaches could be implemented in response to an outdoor biological contamination incident or bioterrorism attack to determine the extent of contamination and for clearance following remediation. However, sample collection over large areas often contains an extensive amount of co-collected debris and native background microorganisms that interfere with the detection of biological threat agents. Sample processing methods that utilize basic laboratory equipment amenable to field deployment were selected and applied to turbid aqueous samples (TAS) to reduce particulates and native environmental organisms prior to culture and rapid viability-polymerase chain reaction (RV-PCR) analytical methods. Bacillus anthracis Sterne (BaS) spores were spiked into TAS collected by soil grab, wet vacuum collection from an outdoor concrete surface, or storm water runoff from an urban parking lot. The implementation of a sample processing method improved the sensitivity of culture and RV-PCR analytical methods for BaS spore detection in soil and wet vacuum TAS samples compared to baseline (minimal to no field processing methods applied). For soil, when the processing method was applied, samples with 15 colony forming units (CFU)/ml (60 CFU/g) and 1.5 CFU/mL (6 CFU/g) BaS spore load were detected using culture and RV-PCR, respectively. Most notably, the processing methods greatly improved the sensitivity of the RV-PCR analytical method for the wet vacuum TAS from no detection at the 1500 CFU/mL BaS spore load level to as low as 1.5 CFU/mL BaS spore load.


Assuntos
Bacillus anthracis , Bacillus anthracis/fisiologia , Monitoramento Ambiental/métodos , Solo , Manejo de Espécimes , Esporos Bacterianos , Estados Unidos
5.
J Occup Environ Hyg ; 17(9): 398-407, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32658631

RESUMO

In 2018, the Centers for Disease Control and Prevention reported that opioid overdose deaths (including fentanyl and carfentanil) comprised 46,802 (69%) of the 67,367 total drug overdose deaths. The opioid overdose epidemic affects Americans not only at home but also in the workplace. First responders may be at risk of opioid exposure during incidents such as vehicle searches and responses to overdose calls. To reduce direct exposure to opioids and other hazardous drugs, first responders rely in part on personal protective equipment (PPE) as their last line of defense. First responders seek guidance from the National Institute for Occupational Safety and Health (NIOSH) regarding appropriate PPE selection for potential opioid exposure. There is limited empirical glove performance data for illicit drugs. Empirical data are needed to validate NIOSH's current recommendations regarding gloves to help prevent exposure to illicit drugs (i.e., powder-free nitrile gloves with a minimum thickness of 5 ± 2 mil [0.127 ± 0.051 millimeters]); however, no industry standard or test method currently exists for specifically evaluating PPE performance against fentanyl and its analogs. To understand the permeation qualities of gloves when challenged against fentanyl and carfentanil solutions, the ASTM International (formerly American Society for Testing and Materials) ASTM D6978-19 standard for chemotherapy drug glove permeation was adapted to test fentanyl and carfentanil hydrochloride solution permeation through twelve disposable glove models, including five models in which the manufacturers claim fentanyl protection. No nitrile glove models showed fentanyl or carfentanil permeation rates above the chemotherapy drug threshold criterion of 0.01 µg/cm2/min (i.e., thereby meeting the performance requirement) as calculated using the ASTM D6978-19 standard within the 240-min test. Latex and vinyl glove materials exhibited fentanyl and carfentanil permeation with permeation rates above this threshold. These findings are among the first empirical data to support NIOSH's current opioid glove recommendations and define procedures that could be used to support industry standards for evaluating opioid permeation through air-impermeable PPE materials.


Assuntos
Fentanila/análogos & derivados , Fentanila/química , Luvas Protetoras/normas , Permeabilidade , Teste de Materiais/métodos , Exposição Ocupacional/prevenção & controle
6.
MRS Adv ; 5(56): 2881-2888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33437533

RESUMO

The Battelle Critical Care Decontamination System™ (CCDS™) decontaminates N95 filtering facepiece respirators (FFRs) using vapor phase hydrogen peroxide (VPHP) for reuse when there is a critical supply shortage. The Battelle CCDS received an Emergency Use Authorization (EUA) from the US Food and Drug Administration (FDA) in March 2020. This research focused on evaluating the mechanical properties of the straps as an indicator of respirator fit. The objective was to characterize the load generated by the straps following up to 20 don/doff and decontamination cycles in Battelle's CCDS. In general, the measured loads at 50 and 100% strains after 20 cycles were similar (±15%) to the as-received controls. Qualitatively, reductions in the load may be associated with loss of elasticity in the straps, potentially reducing the ability to obtain a proper fit. However, small changes in strap elasticity may not affect the ability to obtain a proper fit given the potential for variation in strap length and positioning on the head. Regardless, prior to reusing a N95 respirator, it is important to complete a visual inspection to ensure it is not damaged, malformed, or soiled. If so, it is recommended to discard the respirator and use a different one. Similarly, the respirator should be discarded if the wearer cannot obtain a proper fit during the user seal check.

7.
J Occup Environ Hyg ; 10(10): 564-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24011377

RESUMO

The growing threat of an influenza pandemic presents a unique challenge to healthcare workers, emergency responders, and the civilian population. The Occupational Safety and Health Administration (OSHA) recommends National Institute for Occupational Safety and Health (NIOSH)-approved respirators to provide protection against infectious airborne viruses in various workplace settings. The filtration efficiency of selected NIOSH-approved particulate N95 and P100 filtering facepiece respirators (FFRs) and filter cartridges was investigated against the viable MS2 virus, a non-pathogenic bacteriophage, aerosolized from a liquid suspension. Tests were performed under two cyclic flow conditions (minute volumes of 85 and 135 L/min) and two constant flow rates (85 and 270 L/min). The mean penetrations of viable MS2 through the N95 and P100 FFRs/cartridges were typically less than 2 and 0.03%, respectively, under all flow conditions. All N95 and P100 FFR and cartridge models assessed in this study, therefore, met or exceeded their respective efficiency ratings of 95 and 99.97% against the viable MS2 test aerosol, even under the very high flow conditions. These NIOSH-approved FFRs and particulate respirators equipped with these cartridges can be anticipated to achieve expected levels of protection (consistent with their assigned protection factor) against airborne viral agents, provided that they are properly selected, fitted, worn, and maintained.


Assuntos
Microbiologia do Ar , Exposição por Inalação/prevenção & controle , Dispositivos de Proteção Respiratória , Movimentos do Ar , Análise de Variância , Filtração , Humanos , Vírus da Influenza A , Influenza Humana/prevenção & controle , Teste de Materiais , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/prevenção & controle , Tamanho da Partícula , Estados Unidos
8.
Ann Occup Hyg ; 56(3): 315-25, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22127875

RESUMO

The supply of N95 filtering facepiece respirators (FFRs) may not be adequate to match demand during a pandemic outbreak. One possible strategy to maintain supplies in healthcare settings is to extend FFR use for multiple patient encounters; however, contaminated FFRs may serve as a source for the airborne transmission of virus particles. In this study, reaerosolization of virus particles from contaminated FFRs was examined using bacteriophage MS2 as a surrogate for airborne pathogenic viruses. MS2 was applied to FFRs as droplets or droplet nuclei. A simulated cough (370 l min(-1) peak flow) provided reverse airflow through the contaminated FFR. The number and size of the reaerosolized particles were measured using gelatin filters and an Andersen Cascade Impactor (ACI). Two droplet nuclei challenges produced higher percentages of reaerosolized particles (0.21 and 0.08%) than a droplet challenge (<0.0001%). Overall, the ACI-determined size distribution of the reaerosolized particles was larger than the characterized loading virus aerosol. This study demonstrates that only a small percentage of viable MS2 viruses was reaerosolized from FFRs by reverse airflow under the conditions evaluated, suggesting that the risks of exposure due to reaerosolization associated with extended use can be considered negligible for most respiratory viruses. However, risk assessments should be updated as new viruses emerge and better workplace exposure data becomes available.


Assuntos
Poluentes Ocupacionais do Ar/análise , Controle de Infecções/métodos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Aerossóis , Poluentes Ocupacionais do Ar/efeitos adversos , Bacillus megaterium/virologia , Bacillus subtilis/virologia , Descontaminação/métodos , Filtração/instrumentação , Humanos , Levivirus , Modelos Biológicos , Exposição Ocupacional , Tamanho da Partícula , Projetos de Pesquisa , Dispositivos de Proteção Respiratória , Medição de Risco/métodos
9.
J Occup Environ Hyg ; 6(1): 52-61, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19012163

RESUMO

This study investigated the effect of high flow conditions on aerosol penetration and the relationship between penetration at constant and cyclic flow conditions. National Institute for Occupational Safety and Health (NIOSH)-approved N95 and P100 filtering facepiece respirators and cartridges were challenged with inert solid and oil aerosols. A combination of monodisperse aerosol and size-specific aerosol measurement equipment allowed count-based penetration measurement of particles with nominal diameters ranging from 0.02 to 2.9 microm. Three constant flow conditions (85, 270, and 360 L/min) were selected to match the minute, inhalation mean, and inhalation peak flows of the four cyclic flow conditions (40, 85, 115, and 135 L/min) tested. As expected, penetration was found to increase under increased constant and cyclic flow conditions. The most penetrating particle size (MPPS) generally ranged from 0.05 to 0.2 microm for P100 filters and was approximately 0.05 microm for N95 filters. Although penetration increased at the high flow conditions, the MPPS was relatively unaffected by flow. Of the constant flows tested, the flows equivalent to cyclic inhalation mean and peak flows best approximated the penetration measurements of the corresponding cyclic flows.


Assuntos
Poluentes Atmosféricos/análise , Filtração/instrumentação , Exposição por Inalação/análise , Dispositivos de Proteção Respiratória/normas , Teste de Materiais/instrumentação , Teste de Materiais/métodos , National Institute for Occupational Safety and Health, U.S. , Tamanho da Partícula , Estados Unidos
10.
J Occup Environ Hyg ; 1(1): 29-38, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15202154

RESUMO

Although not well established, mask leakage measured using submicron aerosol challenges is generally accepted as being representative of vapor challenges. The purpose of this study was to compare simulated respirator fit factors (FFs) measured using vapor challenges to those measured using an aerosol challenge. A full-facepiece respirator was mounted on a headform inside a small enclosure and modified with controlled leaks (laser-drilled orifices) to produce FFs ranging from about 300 to 30,000. A breathing machine was used to simulate breathing conditions of 1.0 L tidal volume and 25 breaths/min. A monodisperse aerosol consisting of 0.72 micron polystyrene latex spheres (PSL) was used for the reference test aerosol, and FFs were measured using a laser aerosol spectrometer. An inert gas, sulfur hexafluoride (SF6), and an organic vapor, isoamyl acetate (IAA), were used as the vapor challenges. The in-mask concentration of SF6 was measured using a gas chromatograph (GC). A GC was also used to quantify in-mask IAA concentration samples actively collected with sorbent tubes. FF measurements made with the PSL aerosol challenge were conducted in sequence with the SF6 and IAA challenges, without disturbing the mask, to yield matched data pairs for regression analysis. FFs measured using the PSL reference aerosol were found to correlate well with those measured with the SF6 (r2 = 0.99) and IAA (r2 = 0.98) vapor challenges. FFs measured using IAA tended to be higher at values below 10,000. The best agreement was observed with the inert gas, SF6. The results of this study suggest that submicron aerosols are suitable as quantitative fit test challenges for assessing the performance of respirators against inert vapors.


Assuntos
Exposição por Inalação/prevenção & controle , Modelos Teóricos , Dispositivos de Proteção Respiratória/normas , Aerossóis , Desenho de Equipamento , Falha de Equipamento , Humanos , Teste de Materiais , Tamanho da Partícula , Reprodutibilidade dos Testes , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...