Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 9(2): 362-367, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29629105

RESUMO

Selective dealloying of metal nanoparticles results in rattle-type hollow carbon nanoshells enclosing platinum nanoparticles, which are able to perform size-selective catalysis. Selective functionalization of the outer graphene-like carbon surface prevents agglomeration and leads to well dispersible nanocatalysts in aqueous solutions. The synthesis starts with the production of nanoparticles with a cobalt-platinum-alloy core surrounded by graphene-like carbon via reducing flame spray synthesis. After surface functionalization, simultaneous pore formation in the shell-wall and dissolution of the cobalt results in platinum encapsulated in hollow carbon nanospheres. Catalytic oxidation of differently sized sugars (glucose and maltoheptaose) reveales size-selective catalytic properties of these platinum nanorattles.

2.
Nano Lett ; 17(9): 5277-5284, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28770603

RESUMO

Pure green light-emitting diodes (LEDs) are essential for realizing an ultrawide color gamut in next-generation displays, as is defined by the recommendation (Rec.) 2020 standard. However, because the human eye is more sensitive to the green spectral region, it is not yet possible to achieve an ultrapure green electroluminescence (EL) with a sufficiently narrow bandwidth that covers >95% of the Rec. 2020 standard in the CIE 1931 color space. Here, we demonstrate efficient, ultrapure green EL based on the colloidal two-dimensional (2D) formamidinium lead bromide (FAPbBr3) hybrid perovskites. Through the dielectric quantum well (DQW) engineering, the quantum-confined 2D FAPbBr3 perovskites exhibit a high exciton binding energy of 162 meV, resulting in a high photoluminescence quantum yield (PLQY) of ∼92% in the spin-coated films. Our optimized LED devices show a maximum current efficiency (ηCE) of 13.02 cd A-1 and the CIE 1931 color coordinates of (0.168, 0.773). The color gamut covers 97% and 99% of the Rec. 2020 standard in the CIE 1931 and the CIE 1976 color space, respectively, representing the "greenest" LEDs ever reported. Moreover, the device shows only a ∼10% roll-off in ηCE (11.3 cd A-1) at 1000 cd m-2. We further demonstrate large-area (3 cm2) and ultraflexible (bending radius of 2 mm) LEDs based on 2D perovskites.

3.
Angew Chem Int Ed Engl ; 55(30): 8761-5, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27295216

RESUMO

Thin-walled, hollow carbon nanospheres with a hydrophobic interior and good water dispersability can be synthesized in two steps: First, metal nanoparticles, coated with a few layers of graphene-like carbon, are selectively modified on the outside with a covalently attached hydrophilic polymer. Second, the metal core is removed at elevated temperature treatment with acid, leaving a well-defined carbon-based hydrophobic cavity. Loading experiments with the dye rhodamine B and doxorubicin confirmed the filling and release of a cargo and adjustment of a dynamic equilibrium (cargo-loaded versus release). Rhodamine B preferably accumulates in the interior of the bubbles. Filled nanobubbles allowed constant dye release into pure water. Studies of the concentration-dependent loading and release show an unusual hysteresis.

4.
J Mater Chem B ; 3(16): 3351-3357, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262329

RESUMO

Amyloid beta (Aß) protein aggregates, which include fibrils and oligomers, are neurotoxic and are considered to cause Alzheimer's disease. Thus, separation of these Aß aggregates from biological samples is important. Herein, we report the use of strongly ferromagnetic few-layer graphene-coated magnetic nanoparticles (C/Co), which were functionalized with a cationic polymer, poly[3-(methacryloyl amino)propyl]trimethylammonium chloride (polyMAPTAC), C/Co@polyMAPTAC, for the adsorption and magnetic separation of Aß aggregates. Fast adsorption (∼1 min) of Aß fibrils and oligomers onto the particles was observed. Interestingly, the Aß monomer was not captured by the particles, suggesting that binding to Aß molecules is toxic species-selective. Selective adsorption was also observed in the presence of serum albumin protein. We also showed that C/Co@polyMAPTAC could reduce the cytotoxicity of the Aß aggregate solutions. This study should be useful for further elucidation of the application of nanoparticle adsorption in mediating Aß toxicity.

5.
J Org Chem ; 79(22): 10908-15, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25325822

RESUMO

Workup in organic synthesis can be very time-consuming, particularly when using reagents with both a solubility similar to that of the desired products and a tendency not to crystallize. In this respect, reactions involving organic bases would strongly benefit from a tremendously simplified separation process. Therefore, we synthesized a derivative of the superbasic proton sponge 1,8-bis(dimethylamino)naphthalene (DMAN) and covalently linked it to the strongest currently available nanomagnets based on carbon-coated cobalt metal nanoparticles. The immobilized magnetic superbase reagent was tested in Knoevenagel- and Claisen-Schmidt-type condensations and showed conversions of up to 99%. High yields of up to 97% isolated product could be obtained by simple recrystallization without using column chromatography. Recycling the catalyst was simple and fast with an insignificant decrease in catalytic activity.


Assuntos
1-Naftilamina/análogos & derivados , Nanopartículas Metálicas/química , 1-Naftilamina/síntese química , 1-Naftilamina/química , Carbono/química , Cobalto/química , Cristalização , Fenômenos Magnéticos , Prótons , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...