Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Med Sport ; 22 Suppl 1: S60-S64, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30527901

RESUMO

OBJECTIVES: Since the polymeric materials commonly used for ski boots feature viscoelastic properties, the results of ski boot flexion tests are expected to be influenced by flexion velocity. Devices testing at all skiing specific ankle angular velocities are currently not available. Therefore, the aims of this study were to (i) develop a system allowing the testing of ski boots at high ankle angular velocities, (ii) quantify the effect of ankle angular velocity on viscoelasticity and (iii) determine the repeatability of the system. DESIGN AND METHOD: A test bench and a lower limb prosthesis were developed to determine tibia angle and applied torque. To assess the effect of angular velocity, two pairs of ski boots were tested at 5°/s, 50°/s, 75°/s and 100°/s. To assess stiffness variation and measurement repeatability, ten different used ski boots of different manufacturers were tested twice. RESULTS: Four ski boot flexion stiffness parameters and two energy dissipation factors were reported. The repeatability of the stiffness and the energy dissipation parameters was better than 4% and 3%, respectively. Stiffnesses and dissipation factors increased with increasing angular velocity. CONCLUSION: In the present study a reliable system facilitating the testing of ski boots at velocities of up to 100°/s was developed. To comprehensively characterise the viscoelastic properties of ski boots, we propose to report four ski boot stiffness parameters and two energy dissipation factors. An ankle angular velocity above 50°/s was recommended to perform mechanical tests of ski boots if employed in slalom-like skiing.


Assuntos
Elasticidade , Sapatos , Esqui , Equipamentos Esportivos , Articulação do Tornozelo , Humanos , Extremidade Inferior , Teste de Materiais , Próteses e Implantes , Tíbia , Torque
2.
Sci Total Environ ; 639: 195-207, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29787903

RESUMO

Flood risks are dynamically changing over time. Over decades and centuries, the main drivers for flood risk change are influenced either by perturbations or slow alterations in the natural environment or, more importantly, by socio-economic development and human interventions. However, changes in the natural and human environment are intertwined. Thus, the analysis of the main drivers for flood risk changes requires a disentangling of the individual risk components. Here, we present a method for isolating the individual effects of selected drivers of change and selected flood risk management options based on a model experiment. In contrast to purely synthetic model experiments, we built our analyses upon a retro-model consisting of several spatio-temporal stages of river morphology and settlement structure. The main advantage of this approach is that the overall long-term dynamics are known and do not have to be assumed. We used this model setup to analyse the temporal evolution of the flood risk, for an ex-post evaluation of the key drivers of change, and for analysing possible alternative pathways for flood risk evolution under different governance settings. We showed that in the study region the construction of lateral levees and the consecutive river incision are the main drivers for decreasing flood risks over the last century. A rebound effect in flood risk can be observed following an increase in settlements since the 1960s. This effect is not as relevant as the river engineering measures, but it will become increasingly relevant in the future with continued socio-economic growth. The presented approach could provide a methodological framework for studying pathways for future flood risk evolvement and for the formulation of narratives for adapting governmental flood risk strategies to the spatio-temporal dynamics in the built environment.

3.
Phys Rev Lett ; 119(9): 090603, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949576

RESUMO

We propose the use of a quantum thermal machine for low-temperature thermometry. A hot thermal reservoir coupled to the machine allows for simultaneously cooling the sample while determining its temperature without knowing the model-dependent coupling constants. In its most simple form, the proposed scheme works for all thermal machines that perform at Otto efficiency and can reach Carnot efficiency. We consider a circuit QED implementation that allows for precise thermometry down to ∼15 mK with realistic parameters. Based on the quantum Fisher information, this is close to the optimal achievable performance. This implementation demonstrates that our proposal is particularly promising in systems where thermalization between different components of an experimental setup cannot be guaranteed.

4.
Phys Rev Lett ; 116(1): 013603, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26799019

RESUMO

The Keldysh-ordered full counting statistics is a quasiprobability distribution describing the fluctuations of a time-integrated quantum observable. While it is well known that this distribution can fail to be positive, the interpretation and origin of this negativity has been somewhat unclear. Here, we show how the full counting statistics can be tied to trajectories through Hilbert space, and how this directly connects negative quasiprobabilities to an unusual interference effect. Our findings are illustrated with the example of energy fluctuations in a driven bosonic resonator; we discuss how negative quasiprobability here could be detected experimentally using superconducting microwave circuits.

5.
Appl Ergon ; 45(3): 515-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23932378

RESUMO

Ski boot quality is determined by mechanical properties and comfort. Comfort is strongly affected by cold feet. The purpose of this study was to determine the microclimate in ski boots. Climate chamber tests with five male subjects and field tests with two male subjects were conducted. Temperature and relative humidity were measured using four sensors placed on the foot and one on the liner. Absorbed water in liners and socks was measured with a precision balance. The subjects gave subjective ratings for comfort. The toe sensor temperature dropped below 20 °C at an ambient temperature of 0 °C, -10 °C, and -20 °C. Relative humidity values at the foot were as high as 78% in the climate chamber and 93% in the field. Water absorption in socks and liners ranged from 4 to 10 g in the climate chamber and 19 to 45.5 g in the field. The results reveal the importance of keeping the feet and in particular the toes warm during skiing. One possible improvement may be to construct the liner so that sweat and melted snow are kept as far away as possible from the foot. Liner material with high water absorption capacity and hydrophobic socks were suggested to prevent wet feet.


Assuntos
Pé/fisiologia , Sapatos , Esqui , Adulto , Temperatura Corporal , Humanos , Umidade , Masculino , Dor/etiologia , Sapatos/efeitos adversos , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...