Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(18): 9716-9732, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37592734

RESUMO

The homodimeric PolG2 accessory subunit of the mitochondrial DNA polymerase gamma (Pol γ) enhances DNA binding and processive DNA synthesis by the PolG catalytic subunit. PolG2 also directly binds DNA, although the underlying molecular basis and functional significance are unknown. Here, data from Atomic Force Microscopy (AFM) and X-ray structures of PolG2-DNA complexes define dimeric and hexameric PolG2 DNA binding modes. Targeted disruption of PolG2 DNA-binding interfaces impairs processive DNA synthesis without diminishing Pol γ subunit affinities. In addition, a structure-specific DNA-binding role for PolG2 oligomers is supported by X-ray structures and AFM showing that oligomeric PolG2 localizes to DNA crossings and targets forked DNA structures resembling the mitochondrial D-loop. Overall, data indicate that PolG2 DNA binding has both PolG-dependent and -independent functions in mitochondrial DNA replication and maintenance, which provide new insight into molecular defects associated with PolG2 disruption in mitochondrial disease.


Assuntos
DNA Polimerase gama , DNA Mitocondrial , Humanos , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Replicação do DNA/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo
2.
Nucleic Acids Res ; 48(7): 3987-3997, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32133526

RESUMO

Hfq regulates bacterial gene expression post-transcriptionally by binding small RNAs and their target mRNAs, facilitating sRNA-mRNA annealing, typically resulting in translation inhibition and RNA turnover. Hfq is also found in the nucleoid and binds double-stranded (ds) DNA with a slight preference for A-tracts. Here, we present the crystal structure of the Escherichia coli Hfq Core bound to a 30 bp DNA, containing three 6 bp A-tracts. Although previously postulated to bind to the 'distal' face, three statistically disordered double stranded DNA molecules bind across the proximal face of the Hfq hexamer as parallel, straight rods with B-DNA like conformational properties. One DNA duplex spans the diameter of the hexamer and passes over the uridine-binding proximal-face pore, whereas the remaining DNA duplexes interact with the rims and serve as bridges between adjacent hexamers. Binding is sequence-independent with residues N13, R16, R17 and Q41 interacting exclusively with the DNA backbone. Atomic force microscopy data support the sequence-independent nature of the Hfq-DNA interaction and a role for Hfq in DNA compaction and nucleoid architecture. Our structure and nucleic acid-binding studies also provide insight into the mechanism of sequence-independent binding of Hfq to dsRNA stems, a function that is critical for proper riboregulation.


Assuntos
DNA/química , Proteínas de Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Modelos Moleculares , Ligação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/química
3.
PLoS One ; 13(8): e0203198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157269

RESUMO

Mutations in mitochondrial DNA (mtDNA) have been linked to a variety of metabolic, neurological and muscular diseases which can present at any time throughout life. MtDNA is replicated by DNA polymerase gamma (Pol γ), twinkle helicase and mitochondrial single-stranded binding protein (mtSSB). The Pol γ holoenzyme is a heterotrimer consisting of the p140 catalytic subunit and a p55 homodimeric accessory subunit encoded by the nuclear genes POLG and POLG2, respectively. The accessory subunits enhance DNA binding and promote processive DNA synthesis of the holoenzyme. Mutations in either POLG or POLG2 are linked to disease and adversely affect maintenance of the mitochondrial genome, resulting in depletion, deletions and/or point mutations in mtDNA. A homozygous mutation located at Chr17: 62492543G>A in POLG2, resulting in R182W substitution in p55, was previously identified to cause mtDNA depletion and fatal hepatic liver failure. Here we characterize this homozygous R182W p55 mutation using in vivo cultured cell models and in vitro biochemical assessments. Compared to control fibroblasts, homozygous R182W p55 primary dermal fibroblasts exhibit a two-fold slower doubling time, reduced mtDNA copy number and reduced levels of POLG and POLG2 transcripts correlating with the reported disease state. Expression of R182W p55 in HEK293 cells impairs oxidative-phosphorylation. Biochemically, R182W p55 displays DNA binding and association with p140 similar to WT p55. R182W p55 mimics the ability of WT p55 to stimulate primer extension, support steady-state nucleotide incorporation, and suppress the exonuclease function of Pol γ in vitro. However, R182W p55 has severe defects in protein stability as determined by differential scanning fluorimetry and in stimulating function as determined by thermal inactivation. These data demonstrate that the Chr17: 62492543G>A mutation in POLG2, R182W p55, severely impairs stability of the accessory subunit and is the likely cause of the disease phenotype.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mutação , Divisão Celular , Respiração Celular , Variações do Número de Cópias de DNA , DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Homozigoto , Humanos , Cinética , Ligação Proteica , Estabilidade Proteica , RNA Mensageiro/metabolismo , Transcrição Gênica
4.
J Biol Chem ; 292(10): 4198-4209, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28154168

RESUMO

Human mitochondrial DNA (mtDNA) polymerase γ (Pol γ) is the only polymerase known to replicate the mitochondrial genome. The Pol γ holoenzyme consists of the p140 catalytic subunit (POLG) and the p55 homodimeric accessory subunit (POLG2), which enhances binding of Pol γ to DNA and promotes processivity of the holoenzyme. Mutations within POLG impede maintenance of mtDNA and cause mitochondrial diseases. Two common POLG mutations usually found in cis in patients primarily with progressive external ophthalmoplegia generate T251I and P587L amino acid substitutions. To determine whether T251I or P587L is the primary pathogenic allele or whether both substitutions are required to cause disease, we overproduced and purified WT, T251I, P587L, and T251I + P587L double variant forms of recombinant Pol γ. Biochemical characterization of these variants revealed impaired DNA binding affinity, reduced thermostability, diminished exonuclease activity, defective catalytic activity, and compromised DNA processivity, even in the presence of the p55 accessory subunit. However, physical association with p55 was unperturbed, suggesting intersubunit affinities similar to WT. Notably, although the single mutants were similarly impaired, a dramatic synergistic effect was found for the double mutant across all parameters. In conclusion, our analyses suggest that individually both T251I and P587L substitutions functionally impair Pol γ, with greater pathogenicity predicted for the single P587L variant. Combining T251I and P587L induces extreme thermal lability and leads to synergistic nucleotide and DNA binding defects, which severely impair catalytic activity and correlate with presentation of disease in patients.


Assuntos
DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Mutação/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , DNA Polimerase gama , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/química , Humanos , Cinética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Mutagênese Sítio-Dirigida , Conformação Proteica , Homologia de Sequência de Aminoácidos
5.
Appl Immunohistochem Mol Morphol ; 25(5): 313-319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26657878

RESUMO

The analysis of estrogen receptor (ER) and progesterone receptor (PR) expression levels by immunohistochemistry is an important part of the initial evaluation of breast cancer and critically important in treatment planning. Anti-ERα (clone EP1) and anti-PR (clone PgR 1294) antibodies are in development for the Dako Omnis automated staining platform. These antibodies are not yet commercially available and are in performance evaluation, including the 4 international, multicenter studies reported here. For each antibody, a reproducibility study and a method comparison study was done in a randomized manner in order to test the antibodies under conditions closest to real-world user conditions. The reproducibility studies included 5 staining runs on the Dako Omnis with 20 formalin-fixed and paraffin-embedded human breast carcinoma specimens in 3 independent laboratories, and the method comparison studies included several hundred specimens stained on the Dako Omnis and on the Autostainer Link 48 platforms. Stained slides were evaluated for nuclear ER or PR expression according to American Society of Clinical Oncology/College of American Pathologists guidelines (≥1% cut-off for positive) by pathologists who were blinded from the staining method and specimen ID. For both anti-ERα (clone EP1) and anti-PR (clone PgR 1294) on the Dako Omnis, high reproducibility agreement rates were obtained on the interrun, interlaboratory, and interobserver endpoints. High concordance rates were observed between the specimens stained on the Dako Omnis platform and the Autostainer Link 48 platform. Staining quality was excellent for both anti-ERα (clone EP1) and anti-PR (clone PgR 1294) on the Dako Omnis. These results suggest that these antibodies are reliable and reproducible tools for immunohistochemistry analysis of ER and PR expression levels in formalin-fixed and paraffin-embedded breast carcinoma tissues on the Dako Omnis platform.


Assuntos
Anticorpos/metabolismo , Neoplasias da Mama/diagnóstico , Perfilação da Expressão Gênica/métodos , Imuno-Histoquímica/métodos , Receptores de Estrogênio/imunologia , Receptores de Progesterona/imunologia , Coloração e Rotulagem/normas , Anticorpos/análise , Feminino , Humanos , Imuno-Histoquímica/normas , Imuno-Histoquímica/tendências , Distribuição Aleatória , Reprodutibilidade dos Testes , Coloração e Rotulagem/instrumentação
6.
Ageing Res Rev ; 33: 89-104, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27143693

RESUMO

As regulators of bioenergetics in the cell and the primary source of endogenous reactive oxygen species (ROS), dysfunctional mitochondria have been implicated for decades in the process of aging and age-related diseases. Mitochondrial DNA (mtDNA) is replicated and repaired by nuclear-encoded mtDNA polymerase γ (Pol γ) and several other associated proteins, which compose the mtDNA replication machinery. Here, we review evidence that errors caused by this replication machinery and failure to repair these mtDNA errors results in mtDNA mutations. Clonal expansion of mtDNA mutations results in mitochondrial dysfunction, such as decreased electron transport chain (ETC) enzyme activity and impaired cellular respiration. We address the literature that mitochondrial dysfunction, in conjunction with altered mitochondrial dynamics, is a major driving force behind aging and age-related diseases. Additionally, interventions to improve mitochondrial function and attenuate the symptoms of aging are examined.


Assuntos
Envelhecimento , DNA Mitocondrial , Mitocôndrias/genética , Mutagênese/fisiologia , Envelhecimento/genética , Envelhecimento/metabolismo , Replicação do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/fisiologia , Genes Mitocondriais/genética , Humanos , Mutação , Espécies Reativas de Oxigênio/metabolismo
7.
Eur J Med Genet ; 59(10): 540-5, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27592148

RESUMO

Mitochondrial DNA (mtDNA) depletion syndrome manifests as diverse early-onset diseases that affect skeletal muscle, brain and liver function. Mutations in several nuclear DNA-encoded genes cause mtDNA depletion. We report on a patient, a 3-month-old boy who presented with hepatic failure, and was found to have severe mtDNA depletion in liver and muscle. Whole-exome sequencing identified a homozygous missense variant (c.544C > T, p.R182W) in the accessory subunit of mitochondrial DNA polymerase gamma (POLG2), which is required for mitochondrial DNA replication. This variant is predicted to disrupt a critical region needed for homodimerization of the POLG2 protein and cause loss of processive DNA synthesis. Both parents were phenotypically normal and heterozygous for this variant. Heterozygous mutations in POLG2 were previously associated with progressive external ophthalmoplegia and mtDNA deletions. This is the first report of a patient with a homozygous mutation in POLG2 and with a clinical presentation of severe hepatic failure and mitochondrial depletion.


Assuntos
DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/genética , Pseudo-Obstrução Intestinal/genética , Falência Hepática Aguda/genética , Encefalomiopatias Mitocondriais/genética , Sequência de Bases , Exoma/genética , Humanos , Lactente , Pseudo-Obstrução Intestinal/complicações , Pseudo-Obstrução Intestinal/fisiopatologia , Falência Hepática Aguda/complicações , Falência Hepática Aguda/fisiopatologia , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Encefalomiopatias Mitocondriais/complicações , Encefalomiopatias Mitocondriais/fisiopatologia , Distrofia Muscular Oculofaríngea , Mutação de Sentido Incorreto , Oftalmoplegia/congênito
8.
RNA ; 20(10): 1548-59, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25150227

RESUMO

Hfq is a post-transcriptional regulator that binds U- and A-rich regions of sRNAs and their target mRNAs to stimulate their annealing in order to effect translation regulation and, often, to alter their stability. The functional importance of Hfq and its RNA-binding properties are relatively well understood in Gram-negative bacteria, whereas less is known about the RNA-binding properties of this riboregulator in Gram-positive species. Here, we describe the structure of Hfq from the Gram-positive pathogen Listeria monocytogenes in its RNA-free form and in complex with a U6 oligoribonucleotide. As expected, the protein takes the canonical hexameric toroidal shape of all other known Hfq structures. The U6 RNA binds on the "proximal face" in a pocket formed by conserved residues Q9, N42, F43, and K58. Additionally residues G5 and Q6 are involved in protein-nucleic and inter-subunit contacts that promote uracil specificity. Unlike Staphylococcus aureus (Sa) Hfq, Lm Hfq requires magnesium to bind U6 with high affinity. In contrast, the longer oligo-uridine, U16, binds Lm Hfq tightly in the presence or absence of magnesium, thereby suggesting the importance of additional residues on the proximal face and possibly the lateral rim in RNA interaction. Intrinsic tryptophan fluorescence quenching (TFQ) studies reveal, surprisingly, that Lm Hfq can bind (GU)3G and U6 on its proximal and distal faces, indicating a less stringent adenine-nucleotide specificity site on the distal face as compared to the Gram-positive Hfq proteins from Sa and Bacillus subtilis and suggesting as yet uncharacterized RNA-binding modes on both faces.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Listeria monocytogenes/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Motivos de Aminoácidos , Cristalografia por Raios X , Polarização de Fluorescência , Fator Proteico 1 do Hospedeiro/química , Listeria monocytogenes/genética , Mutação/genética , Ligação Proteica , Conformação Proteica , RNA Mensageiro/genética , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Triptofano/química , Triptofano/genética , Triptofano/metabolismo
9.
Am J Clin Pathol ; 133(2): 205-11, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20093229

RESUMO

The overall purpose of the study was to demonstrate applicability of the DAKO dual-color chromogenic in situ hybridization (CISH) assay (DAKO Denmark, Glostrup) with respect to 4 fluorescence in situ hybridization (FISH) probes: MYC (c-MYC), EGFR, ERBB2 (HER2), and TOP2A. The study showed that the dual-color CISH assay can convert Texas red and fluorescein isothiocyanate (FITC) signals into chromogenic signals with an almost complete 1:1 conversion ratio. Agreement studies between the FISH assays for HER2 and TOP2A and the corresponding CISH conversion assays showed 100% concordance (kappa values of 1.0) between the CISH and FISH methods for HER2 and TOP2A status. The correlations of the gene copy number to centromere-17 ratios were similarly high, with a correlation coefficient (r) for HER2 and TOP2A of more than 0.95. Owing to the relatively small number of specimens in this study, it is important that the data are confirmed in a larger study.


Assuntos
Compostos Cromogênicos , Sondas de DNA , Hibridização in Situ Fluorescente/métodos , Antígenos de Neoplasias/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Dosagem de Genes , Genes erbB-2 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose
10.
APMIS ; 116(5): 382-92, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18452428

RESUMO

Histone deacetylase (HDAC) inhibition is a novel entity in medical oncology, and several HDAC inhibitors are in clinical trials. One of them is the hydroxamic acid belinostat (PXD101) that has demonstrated therapeutic efficacy for several clinical indications. Acetylation of histones is a key event after treatment with HDAC inhibitors, and could thus be used as a marker for monitoring cellular response to HDAC inhibitor treatment. Here we describe the utility of a newly described monoclonal antibody against acetylated H4 for immunohistochemistry on paraffin-embedded fine needle biopsies from nude mice carrying A2780 human ovarian cancer xenografts. Acetylated H4 was monitored in vivo by immunohistochemistry during treatment with belinostat, and compared with pharmacokinetics in plasma and tumor tissue. We found an increased level of acetylated H4 15 min after a single treatment (200 mg/kg i.v.) with maximum level reached after 1 h. H4 acetylation intensity reflected the belinostat concentration in plasma and tumor tissue. The threshold level for belinostat activity, indicated by acetylated H4, correlated with belinostat plasma concentrations above 1,000 ng/ml. In conclusion, examination of H4 acetylation in fine needle biopsies using the T25 antibody may prove useful in monitoring HDAC inhibitor efficacy in clinical trials involving humans with solid tumors.


Assuntos
Antineoplásicos/uso terapêutico , Histonas/metabolismo , Ácidos Hidroxâmicos/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Acetilação/efeitos dos fármacos , Animais , Anticorpos Monoclonais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Células HCT116 , Inibidores de Histona Desacetilases , Histona Desacetilases/imunologia , Histonas/imunologia , Humanos , Ácidos Hidroxâmicos/sangue , Ácidos Hidroxâmicos/farmacocinética , Leucemia P388/tratamento farmacológico , Leucemia P388/enzimologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/enzimologia , Masculino , Camundongos , Camundongos Nus , Neoplasias Experimentais/enzimologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Sulfonamidas , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...