Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 287(1): 160-172, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436884

RESUMO

The engineering of synthetic metabolic routes can provide valuable lessons on the roles of different biochemical constraints in shaping pathway activity. In this study, we designed and engineered a novel glycerol assimilation pathway in Escherichia coli. While the synthetic pathway was based only on well-characterized endogenous reactions, we were not able to establish robust growth using standard concentrations of glycerol. Long-term evolution failed to improve growth via the pathway, indicating that this limitation was not regulatory but rather relates to fundamental aspects of cellular metabolism. We show that the activity of the synthetic pathway is fully controlled by three key physicochemical constraints: thermodynamics, kinetics and metabolite toxicity. Overcoming a thermodynamic barrier at the beginning of the pathway requires high glycerol concentrations. A kinetic barrier leads to a Monod-like growth dependency on substrate concentration, but with a very high substrate saturation constant. Finally, the flat thermodynamic profile of the pathway enforces a pseudoequilibrium between glycerol and the reactive intermediate dihydroxyacetone, which inhibits growth when the feedstock concentration surpasses 1000 mm. Overall, this study serves to demonstrate the use of synthetic biology to elucidate key design principles of cellular metabolism.


Assuntos
Escherichia coli/metabolismo , Glicerol/metabolismo , Engenharia Metabólica , Biologia Sintética , Fenômenos Bioquímicos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Cinética , Termodinâmica
2.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887417

RESUMO

The productivity of industrial fermentation processes is essentially limited by the biomass-specific substrate consumption rate (qS ) of the applied microbial production system. Since qS depends on the growth rate (µ), we highlight the potential of the fastest-growing nonpathogenic bacterium, Vibrio natriegens, as a novel candidate for future biotechnological processes. V. natriegens grows rapidly in BHIN complex medium with a µ of up to 4.43 h-1 (doubling time of 9.4 min) as well as in minimal medium supplemented with various industrially relevant substrates. Bioreactor cultivations in minimal medium with glucose showed that V. natriegens possesses an exceptionally high qS under aerobic (3.90 ± 0.08 g g-1 h-1) and anaerobic (7.81 ± 0.71 g g-1 h-1) conditions. Fermentations with resting cells of genetically engineered V. natriegens under anaerobic conditions yielded an overall volumetric productivity of 0.56 ± 0.10 g alanine liter-1 min-1 (i.e., 34 g liter-1 h-1). These inherent properties render V. natriegens a promising new microbial platform for future industrial fermentation processes operating with high productivity.IMPORTANCE Low conversion rates are one major challenge to realizing microbial fermentation processes for the production of commodities operating competitively with existing petrochemical approaches. For this reason, we screened for a novel platform organism possessing characteristics superior to those of traditionally employed microbial systems. We identified the fast-growing V. natriegens, which exhibits a versatile metabolism and shows striking growth and conversion rates, as a solid candidate to reach outstanding productivities. Due to these inherent characteristics, V. natriegens can speed up common laboratory routines, is suitable for already existing production procedures, and forms an excellent foundation for engineering next-generation bioprocesses.

3.
Appl Microbiol Biotechnol ; 100(24): 10573-10583, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27687994

RESUMO

The stereochemistry of 2,3-butanediol (2,3-BD) synthesis in microbial fermentations is important for many applications. In this work, we showed that Corynebacterium glutamicum endowed with the Lactococcus lactis genes encoding α-acetolactate synthase and decarboxylase activities produced meso-2,3-BD as the major end product, meaning that (R)-acetoin is a substrate for endogenous 2,3-butanediol dehydrogenase (BDH) activity. This is curious in view of the reported absolute stereospecificity of C. glutamicum BDH for (S)-acetoin (Takusagawa et al. Biosc Biotechnol Biochem 65:1876-1878, 2001). To resolve this discrepancy, the enzyme encoded by butA Cg was produced in Escherichia coli and purified, and the stereospecific properties of the pure protein were examined. Activity assays monitored online by 1H-NMR using racemic acetoin and an excess of NADH showed an initial, fast production of (2S,3S)-2,3-BD, followed by a slow (∼20-fold lower apparent rate) formation of meso-2,3-BD. Kinetic parameters for (S)-acetoin, (R)-acetoin, meso-2,3-BD and (2S,3S)-BD were determined by spectrophotometric assays. V max values for (S)-acetoin and (R)-acetoin were 119 ± 15 and 5.23 ± 0.06 µmol min-1 mg protein-1, and K m values were 0.23 ± 0.02 and 1.49 ± 0.07 mM, respectively. We conclude that C. glutamicum BDH is not absolutely specific for (S)-acetoin, though this is the preferred substrate. Importantly, the low activity of BDH with (R)-acetoin was sufficient to support high yields of meso-2,3-BD in the engineered strain C. glutamicum ΔaceEΔpqoΔldhA(pEKEx2-als,aldB,butA Cg ). Additionally, we found that the BDH activity was nearly abolished upon inactivation of butA Cg (from 0.30 ± 0.03 to 0.004 ± 0.001 µmol min-1 mg protein-1), indicating that C. glutamicum expresses a single BDH under the experimental conditions examined.


Assuntos
Oxirredutases do Álcool/metabolismo , Butileno Glicóis/metabolismo , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Acetoína/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Carboxiliases/genética , Carboxiliases/metabolismo , Corynebacterium glutamicum/genética , Escherichia coli/genética , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...