Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(11): 113601, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29601756

RESUMO

We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability.

2.
Phys Rev Lett ; 117(22): 223001, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925746

RESUMO

We report on the realization of a free-space single-photon absorber, which deterministically absorbs exactly one photon from an input pulse. Our scheme is based on the saturation of an optically thick medium by a single photon due to Rydberg blockade. By converting one absorbed input photon into a stationary Rydberg excitation, decoupled from the light field through fast engineered dephasing, we blockade the full atomic cloud and change our optical medium from opaque to transparent. We show that this results in the subtraction of one photon from the input pulse over a wide range of input photon numbers. We investigate the change of the pulse shape and temporal photon statistics of the transmitted light pulses for different input photon numbers and compare the results to simulations. Based on the experimental results, we discuss the applicability of our single-photon absorber for number resolved photon detection schemes or quantum gate operations.

3.
Nat Commun ; 7: 12480, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27515278

RESUMO

Mapping the strong interaction between Rydberg atoms onto single photons via electromagnetically induced transparency enables manipulation of light at the single-photon level and few-photon devices such as all-optical switches and transistors operated by individual photons. Here we demonstrate experimentally that Stark-tuned Förster resonances can substantially increase this effective interaction between individual photons. This technique boosts the gain of a single-photon transistor to over 100, enhances the non-destructive detection of single Rydberg atoms to a fidelity beyond 0.8, and enables high-precision spectroscopy on Rydberg pair states. On top, we achieve a gain larger than 2 with gate photon read-out after the transistor operation. Theory models for Rydberg polariton propagation on Förster resonance and for the projection of the stored spin-wave yield excellent agreement to our data and successfully identify the main decoherence mechanism of the Rydberg transistor, paving the way towards photonic quantum gates.

4.
Phys Rev Lett ; 115(8): 083602, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26340188

RESUMO

We experimentally study the effects of the anisotropic Rydberg interaction on D-state Rydberg polaritons slowly propagating through a cold atomic sample. We observe the interaction-induced dephasing of Rydberg polaritons at very low photon input rates into the medium. We develop a model combining the propagation of the two-photon wave function through our system with nonperturbative calculations of the anisotropic Rydberg interaction to show that the observed effect can be attributed to pairwise interaction of individual Rydberg polaritons at distances larger than the Rydberg blockade.

5.
Phys Rev Lett ; 115(2): 023001, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207465

RESUMO

The formation of ultralong-range Rydberg molecules is a result of the attractive interaction between a Rydberg electron and a polarizable ground-state atom in an ultracold gas. In the nondegenerate case, the backaction of the polarizable atom on the electronic orbital is minimal. Here we demonstrate how controlled degeneracy of the respective electronic orbitals maximizes this backaction and leads to stronger binding energies and lower symmetry of the bound dimers. Consequently, the Rydberg orbitals hybridize due to the molecular bond.

6.
Nat Commun ; 5: 4546, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082599

RESUMO

In Rydberg atoms, at least one electron is excited to a state with a high principal quantum number. In an ultracold environment, this low-energy electron can scatter off a ground state atom allowing for the formation of a Rydberg molecule consisting of one Rydberg atom and several ground state atoms. Here we investigate those Rydberg molecules created by photoassociation for the spherically symmetric S-states. A step by step increase of the principal quantum number up to n=111 enables us to go beyond the previously observed dimer and trimer states up to a molecule, where four ground state atoms are bound by one Rydberg atom. The increase of bound atoms and the decreasing binding potential per atom with principal quantum number results finally in an overlap of spectral lines. The associated density-dependent line broadening sets a fundamental limit, for example, for the optical thickness per blockade volume in Rydberg quantum optics experiments.

7.
Phys Rev Lett ; 113(5): 053601, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126918

RESUMO

We report on the realization of an all-optical transistor by mapping gate and source photons into strongly interacting Rydberg excitations with different principal quantum numbers in an ultracold atomic ensemble. We obtain a record switch contrast of 40% for a coherent gate input with mean photon number one and demonstrate attenuation of source transmission by over ten photons with a single gate photon. We use our optical transistor to demonstrate the nondestructive detection of a single Rydberg atom with a fidelity of 0.72(4).

8.
Phys Rev Lett ; 112(14): 143008, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765956

RESUMO

We report on the formation of ultralong-range Rydberg D-state molecules via photoassociation in an ultracold cloud of rubidium atoms. By applying a magnetic offset field on the order of 10 G and high resolution spectroscopy, we are able to resolve individual rovibrational molecular states. A full theory, using a Fermi pseudopotential approach including s- and p-wave scattering terms, reproduces the measured binding energies. The calculated molecular wave functions show that in the experiment we can selectively excite stationary molecular states with an extraordinary degree of alignment or antialignment with respect to the magnetic field axis.

9.
Phys Rev Lett ; 105(26): 265302, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21231675

RESUMO

We prepare a chemically and thermally one-dimensional (1D) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperature. We reach temperatures down to kT≈0.5ℏω(⊥) (transverse oscillator eigenfrequency ω(⊥)) when collisional thermalization slows down as expected in 1D. At the lowest temperatures the transverse-momentum distribution exhibits a residual dependence on the line density n(1D), characteristic for 1D systems. For very low densities the approach to the transverse single-particle ground state is linear in n(1D).

10.
Opt Lett ; 34(22): 3463-5, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19927178

RESUMO

Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice.

11.
Phys Rev Lett ; 102(20): 203902, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19519028

RESUMO

We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic-crystal fiber and using quantum optical techniques for generating slow light propagation and large nonlinear interaction between light beams.

12.
Nature ; 449(7160): 324-7, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17882216

RESUMO

Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...