Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sci Rep ; 14(1): 5410, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528007

RESUMO

Honey bees and other pollinators are critical for food production and nutritional security but face multiple survival challenges. The effect of climate change on honey bee colony losses is only recently being explored. While correlations between higher winter temperatures and greater colony losses have been noted, the impacts of warmer autumn and winter temperatures on colony population dynamics and age structure as an underlying cause of reduced colony survival have not been examined. Focusing on the Pacific Northwest US, our objectives were to (a) quantify the effect of warmer autumns and winters on honey bee foraging activity, the age structure of the overwintering cluster, and spring colony losses, and (b) evaluate indoor cold storage as a management strategy to mitigate the negative impacts of climate change. We perform simulations using the VARROAPOP population dynamics model driven by future climate projections to address these objectives. Results indicate that expanding geographic areas will have warmer autumns and winters extending honey bee flight times. Our simulations support the hypothesis that late-season flight alters the overwintering colony age structure, skews the population towards older bees, and leads to greater risks of colony failure in the spring. Management intervention by moving colonies to cold storage facilities for overwintering has the potential to reduce honey bee colony losses. However, critical gaps remain in how to optimize winter management strategies to improve the survival of overwintering colonies in different locations and conditions. It is imperative that we bridge the gaps to sustain honey bees and the beekeeping industry and ensure food and nutritional security.


Assuntos
Criação de Abelhas , Polinização , Abelhas , Animais , Estações do Ano , Criação de Abelhas/métodos , Alimentos , Noroeste dos Estados Unidos
2.
J Histochem Cytochem ; 71(7): 409-410, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37415491

RESUMO

The fading and quenching of fluorescence intensity has been a major problem in the use of fluorescein isothiocyanate (FITC) for immunofluorescence cytochemical techniques, especially with laser confocal microscopy. The companion article by Longin et al. provided an empirical approach to overcoming this problem. The present commentary highlights the significance of the Longin et al. article when it was published and its continued relevance today.


Assuntos
Corantes Fluorescentes , Isotiocianatos , Fluoresceína-5-Isotiocianato , Microscopia Confocal/métodos , Imunofluorescência
3.
J Math Biol ; 87(1): 19, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37389742

RESUMO

The honeybee plays an extremely important role in ecosystem stability and diversity and in the production of bee pollinated crops. Honey bees and other pollinators are under threat from the combined effects of nutritional stress, parasitism, pesticides, and climate change that impact the timing, duration, and variability of seasonal events. To understand how parasitism and seasonality influence honey bee colonies separately and interactively, we developed a non-autonomous nonlinear honeybee-parasite interaction differential equation model that incorporates seasonality into the egg-laying rate of the queen. Our theoretical results show that parasitism negatively impacts the honey bee population either by decreasing colony size or destabilizing population dynamics through supercritical or subcritical Hopf-bifurcations depending on conditions. Our bifurcation analysis and simulations suggest that seasonality alone may have positive or negative impacts on the survival of honey bee colonies. More specifically, our study indicates that (1) the timing of the maximum egg-laying rate seems to determine when seasonality has positive or negative impacts; and (2) when the period of seasonality is large it can lead to the colony collapsing. Our study further suggests that the synergistic influences of parasitism and seasonality can lead to complicated dynamics that may positively and negatively impact the honey bee colony's survival. Our work partially uncovers the intrinsic effects of climate change and parasites, which potentially provide essential insights into how best to maintain or improve a honey bee colony's health.


Assuntos
Ecossistema , Praguicidas , Abelhas , Animais , Mudança Climática , Colapso da Colônia/epidemiologia , Dinâmica Populacional
4.
J Econ Entomol ; 116(4): 1078-1090, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37335908

RESUMO

For over a decade, high percentages of honey bee colonies have been perishing during the winter creating economic hardship to beekeepers and growers of early-season crops requiring pollination. A way to reduce colony losses might be moving hives into cold storage facilities for the winter. We explored factors that could affect the size and survival of colonies overwintered in cold storage and then used for almond pollination. The factors were when hives were put into cold storage and their location prior to overwintering. We found that colonies summered in North Dakota, USA and moved to cold storage in October were larger after cold storage and almond pollination than those moved in November. Colony location prior to overwintering also affected size and survival. Colonies summered in southern Texas, USA and moved to cold storage in November were smaller after cold storage and almond pollination than those from North Dakota. The colonies also were smaller than those overwintered in Texas apiaries. Fat body metrics of bees entering cold storage differed between summer locations. North Dakota bees had higher lipid and lower protein concentrations than Texas bees. While in cold storage, fat bodies gained weight, protein concentrations increased, and lipids decreased. The decrease in lipid concentrations was correlated with the amount of brood reared while colonies were in cold storage. Our study indicates that in northern latitudes, overwintering survival might be affected by when colonies are put into cold storage and that colonies summered in southern latitudes should be overwintered there.


Assuntos
Himenópteros , Prunus dulcis , Abelhas , Animais , Estações do Ano , North Dakota , Texas , Lipídeos
5.
J Adv Res ; 53: 99-114, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36564001

RESUMO

INTRODUCTION: Honey bees provides valuable pollination services for world food crops and wild flowering plants which are habitats of many animal species and remove carbon dioxide from the atmosphere, a powerful tool in the fight against climate change. Nevertheless, the honey bee population has been declining and the majority of colony losses occur during the winter. OBJECTIVES: The goal of this study was to understand the mechanisms underlying overwinter colony losses and develop novel therapeutic strategies for improving bee health. METHODS: First, pathogen prevalence in overwintering bees were screened between 2015 and 2018. Second, RNA sequencing (RNA-Seq) for transcriptional profiling of overwintering honey bees was conducted and qRT-PCR was performed to confirm the results of the differential expression of selected genes. Lastly, laboratory bioassays were conducted to measure the effects of cold challenges on bee survivorship and stress responses and to assess the effect of a novel medication for alleviating cold stress in honey bees. RESULTS: We identified that sirtuin signaling pathway is the most significantly enriched pathway among the down-regulated differentially expressed genes (DEGs) in overwintering diseased bees. Moreover, we showed that the expression of SIRT1 gene, a major sirtuin that regulates energy and immune metabolism, was significantly downregulated in bees merely exposed to cold challenges, linking cold stress with altered gene expression of SIRT1. Furthermore, we demonstrated that activation of SIRT1 gene expression by SRT1720, an activator of SIRT1 expression, could improve the physiology and extend the lifespan of cold-stressed bees. CONCLUSION: Our study suggests that increased energy consumption of overwintering bees for maintaining hive temperature reduces the allocation of energy toward immune functions, thus making the overwintering bees more susceptible to disease infections and leading to high winter colony losses. The novel information gained from this study provides a promising avenue for the development of therapeutic strategies for mitigating colony losses, both overwinter and annually.


Assuntos
Transdução de Sinais , Sirtuína 1 , Abelhas , Animais , Reação em Cadeia da Polimerase , Suscetibilidade a Doenças , Polinização
6.
Environ Pollut ; 311: 120010, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002100

RESUMO

Honey bee pollination services are of tremendous agricultural and economic importance. Despite this, honey bees and other pollinators face ongoing perils, including population declines due to a variety of environmental stressors. Fungicides may be particularly insidious stressors for pollinators due to their environmental ubiquity and widespread approval for application during crop bloom. The mechanisms by which fungicides affect honey bees are poorly understood and any seasonal variations in their impact are unknown. Here we assess the effects on honey bee colonies of four-week exposure (the approximate duration of the almond pollination season) of a fungicide, Pristine® (25.2% boscalid, 12.8% pyraclostrobin), that has been commonly used for almonds. We exposed colonies to Pristine® in pollen patties placed into the hive, in either summer or fall, and assessed colony brood and worker populations, colony pollen collection and consumption, and worker age of first foraging and longevity. During the summer, Pristine® exposure induced precocious foraging, and reduced worker longevity resulting in smaller colonies. During the fall, Pristine® exposure induced precocious foraging but otherwise had no significant measured effects. During the fall, adult and brood population levels, and pollen consumption and collection, were all much lower, likely due to preparations for winter. Fungicides and other pesticides may often have reduced effects on honey bees during seasons of suppressed colony growth due to bees consuming less pollen and pesticide.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Abelhas , Fungicidas Industriais/análise , Fungicidas Industriais/toxicidade , Pólen/química , Polinização , Estações do Ano
7.
Front Endocrinol (Lausanne) ; 13: 885909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35880052

RESUMO

Stressors of different natures induce activation of the hypothalamic-pituitary-adrenal (HPA) axis at different magnitudes. Moreover, the HPA axis response to repeated exposure is usually distinct from that elicited by a single session. Paradoxical sleep deprivation (PSD) augments ACTH and corticosterone (CORT) levels, but the nature of this stimulus is not yet defined. The purpose of the present study was to qualitatively compare the stress response of animals submitted to PSD to that of rats exposed once or four times to cold, as a physiological stress, movement restraint (RST) as a mixed stressor and predator odour (PRED) as the psychological stressor, whilst animals were submitted for 1 or 4 days to PSD and respective control groups. None of the stressors altered corticotropin releasing factor immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN), median eminence (ME) or central amygdala, compared to control groups, whereas vasopressin immunoreactivity in PSD animals was decreased in the PVN and increased in the ME, indicating augmented activity of this system. ACTH levels were higher after repeated stress or prolonged PSD than after single- or 1 day-exposure and control groups, whereas the CORT response was habituated by repeated stress, but not by 4-days PSD. This dissociation resulted in changes in the CORT : ACTH ratio, with repeated cold and RST decreasing the ratio compared to single exposure, but no change was seen in PRED and PSD groups. Comparing the magnitude and pattern of pituitary-adrenal response to the different stressors, PSD-induced responses were closer to that shown by PRED-exposed rats. In contrast, the hypothalamic response of PSD-exposed rats was unique, inasmuch as this was the only stressor which increased the activity of the vasopressin system. In conclusion, we propose that the pituitary-adrenal response to PSD is similar to that induced by a psychological stressor.


Assuntos
Doenças da Hipófise , Sistema Hipófise-Suprarrenal , Hormônio Adrenocorticotrópico/metabolismo , Animais , Corticosterona , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Privação do Sono , Sono REM , Estresse Psicológico
8.
J Neuroendocrinol ; 34(5): e13115, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35502534

RESUMO

The anatomy and morphology of gonadotropin-releasing hormone (GnRH) neurons makes them both a joy and a challenge to investigate. They are a highly unique population of neurons given their developmental migration into the brain from the olfactory placode, their relatively small number, their largely scattered distribution within the rostral forebrain, and, in some species, their highly varied individual anatomical characteristics. These unique features have posed technological hurdles to overcome and promoted fertile ground for the establishment and use of creative approaches. Historical and more contemporary discoveries defining GnRH neuron anatomy remain critical in shaping and challenging our views of GnRH neuron function in the regulation of reproductive function. We begin this review with a historical overview of anatomical discoveries and developing methodologies that have shaped our understanding of the reproductive axis. We then highlight significant discoveries across specific groups of mammalian species to address some of the important comparative aspects of GnRH neuroanatomy. Lastly, we touch on unresolved questions and opportunities for future neuroanatomical research on this fascinating and important population of neurons.


Assuntos
Hormônio Liberador de Gonadotropina , Neuroanatomia , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Mamíferos , Neurônios/metabolismo , Prosencéfalo , Reprodução
9.
Math Biosci Eng ; 18(6): 9606-9650, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34814360

RESUMO

Honeybees have an irreplaceable position in agricultural production and the stabilization of natural ecosystems. Unfortunately, honeybee populations have been declining globally. Parasites, diseases, poor nutrition, pesticides, and climate changes contribute greatly to the global crisis of honeybee colony losses. Mathematical models have been used to provide useful insights on potential factors and important processes for improving the survival rate of colonies. In this review, we present various mathematical tractable models from different aspects: 1) simple bee-only models with features such as age segmentation, food collection, and nutrient absorption; 2) models of bees with other species such as parasites and/or pathogens; and 3) models of bees affected by pesticide exposure. We aim to review those mathematical models to emphasize the power of mathematical modeling in helping us understand honeybee population dynamics and its related ecological communities. We also provide a review of computational models such as VARROAPOP and BEEHAVE that describe the bee population dynamics in environments that include factors such as temperature, rainfall, light, distance and quality of food, and their effects on colony growth and survival. In addition, we propose a future outlook on important directions regarding mathematical modeling of honeybees. We particularly encourage collaborations between mathematicians and biologists so that mathematical models could be more useful through validation with experimental data.


Assuntos
Ecossistema , Praguicidas , Animais , Abelhas , Modelos Teóricos , Dinâmica Populacional
10.
Ecotoxicol Environ Saf ; 226: 112841, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607189

RESUMO

Recent observations of many sublethal effects of pesticides on pollinators have raised questions about whether standard short-term laboratory tests of pesticide effects on survival are sufficient for pollinator protection. The fungicide Pristine® and its active ingredients (25.2% boscalid, 12.8% pyraclostrobin) have been reported to have low acute toxicity to caged honey bee workers, but many sublethal effects at field-relevant doses have been reported and Pristine® was recently found to increase worker pollen consumption, reduce worker longevity and colony populations at field relevant concentrations (Fisher et al. 2021). To directly compare these whole-colony field results to more standard laboratory toxicology tests, the effects of Pristine®, at a range of field-relevant concentrations, were assessed on the survival and pollen consumption of honey bee workers 0-14 days of age. Also, to separate the effects of the inert and two active ingredients, bees were fed pollen containing boscalid, pyraclostrobin, or pyraclostrobin plus boscalid, at concentrations matching those in the Pristine® treatments. Pyraclostrobin significantly reduced pollen consumption across the duration of the experiment, and dose-dependently reduced pollen consumption on days 12-14. Pristine® and boscalid significantly reduced pollen feeding rate on days 12-14. Boscalid reduced survival in a dose-dependent manner. Consumption of Pristine® or pyraclostrobin plus boscalid did not affect survival, providing evidence against strong negative effects of the inert ingredients in Pristine® and against negative synergistic effects of boscalid and pyraclostrobin. The stronger toxic effects of Pristine® observed in field colonies compared to this laboratory test, and the opposite responses of pollen consumption in the laboratory and field to Pristine®, show that standard laboratory toxicology tests can fail to predict responses of pollinators to pesticides and to provide protection.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Abelhas , Fungicidas Industriais/toxicidade , Laboratórios , Longevidade , Pólen
11.
Ecol Appl ; 31(8): e02442, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34374161

RESUMO

Honey bees are crucial pollinators for agricultural crops but are threatened by a multitude of stressors including exposure to pesticides. Linking our understanding of how pesticides affect individual bees to colony-level responses is challenging because colonies show emergent properties based on complex internal processes and interactions among individual bees. Agent-based models that simulate honey bee colony dynamics may be a tool for scaling between individual and colony effects of a pesticide. The U.S. Environmental Protection Agency (USEPA) and U.S. Department of Agriculture (USDA) are developing the VarroaPop + Pesticide model, which simulates the dynamics of honey bee colonies and how they respond to multiple stressors, including weather, Varroa mites, and pesticides. To evaluate this model, we used Approximate Bayesian Computation to fit field data from an empirical study where honey bee colonies were fed the insecticide clothianidin. This allowed us to reproduce colony feeding study data by simulating colony demography and mortality from ingestion of contaminated food. We found that VarroaPop + Pesticide was able to fit general trends in colony population size and structure and reproduce colony declines from increasing clothianidin exposure. The model underestimated adverse effects at low exposure (36 µg/kg), however, and overestimated recovery at the highest exposure level (140 µg/kg), for the adult and pupa endpoints, suggesting that mechanisms besides oral toxicity-induced mortality may have played a role in colony declines. The VarroaPop + Pesticide model estimates an adult oral LD50 of 18.9 ng/bee (95% CI 10.1-32.6) based on the simulated feeding study data, which falls just above the 95% confidence intervals of values observed in laboratory toxicology studies on individual bees. Overall, our results demonstrate a novel method for analyzing colony-level data on pesticide effects on bees and making inferences on pesticide toxicity to individual bees.


Assuntos
Inseticidas , Praguicidas , Varroidae , Animais , Teorema de Bayes , Abelhas , Produtos Agrícolas , Inseticidas/toxicidade , Praguicidas/toxicidade , Varroidae/fisiologia
12.
Environ Pollut ; 288: 117720, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252716

RESUMO

Although fungicides were previously considered to be safe for important agricultural pollinators such as honey bees, recent evidence has shown that they can cause a number of behavioral and physiological sublethal effects. Here, we focus on the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin), which is sprayed during the blooming period on a variety of crops and is known to affect honey bee mitochondria at field-relevant levels. To date, no study has tested the effects of a field-relevant concentration of a fungicide on associative learning ability in honey bees. We tested whether chronic, colony-level exposure at field-relevant and higher concentrations of Pristine® impairs performance on the proboscis extension reflex (PER) paradigm, an associative learning task. Learning performance was reduced at higher field-relevant concentrations of Pristine®. The reductions in learning performance could not be explained by effects on hunger or motivation, as sucrose responsiveness was not affected by Pristine® exposure. To determine whether Pristine®'s negative effects on learning performance were mediated at a specific life stage, we conducted a cross-fostering experiment that exposed bees to the fungicide either only as larvae, only as adults, or during both stages. We found that exposure across the entire life was necessary to significantly reduce learning performance, although non-significant reductions occurred when bees were exposed during just one stage. Our study provides strong evidence that Pristine® has significant sublethal effects on learning performance. As associative learning is a necessary ability for foraging, our results raise concerns that Pristine® could impair foraging abilities and substantially weaken colony health.


Assuntos
Fungicidas Industriais , Animais , Abelhas , Fungicidas Industriais/toxicidade , Larva
13.
Insects ; 12(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801848

RESUMO

Honey bee colonies have a yearly cycle that is supported nutritionally by the seasonal progression of flowering plants. In the spring, colonies grow by rearing brood, but in the fall, brood rearing declines in preparation for overwintering. Depending on where colonies are located, the yearly cycle can differ especially in overwintering activities. In temperate climates of Europe and North America, colonies reduce or end brood rearing in the fall while in warmer climates bees can rear brood and forage throughout the year. To test the hypothesis that nutrients available in seasonal pollens and honey bee responses to them can differ we analyzed pollen in the spring and fall collected by colonies in environments where brood rearing either stops in the fall (Iowa) or continues through the winter (Arizona). We fed both types of pollen to worker offspring of queens that emerged and open mated in each type of environment. We measured physiological responses to test if they differed depending on the location and season when the pollen was collected and the queen line of the workers that consumed it. Specifically, we measured pollen and protein consumption, gene expression levels (hex 70, hex 110, and vg) and hypopharyngeal gland (HPG) development. We found differences in macronutrient content and amino and fatty acids between spring and fall pollens from the same location and differences in nutrient content between locations during the same season. We also detected queen type and seasonal effects in HPG size and differences in gene expression between bees consuming spring vs. fall pollen with larger HPG and higher gene expression levels in those consuming spring pollen. The effects might have emerged from the seasonal differences in nutritional content of the pollens and genetic factors associated with the queen lines we used.

14.
Ecotoxicol Environ Saf ; 217: 112251, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33905983

RESUMO

Pollinators and other insects are experiencing an ongoing worldwide decline. While various environmental stressors have been implicated, including pesticide exposure, the causes of these declines are complex and highly debated. Fungicides may constitute a particularly prevalent threat to pollinator health due to their application on many crops during bloom, and because pollinators such as bees may consume fungicide-tainted pollen or nectar. In a previous study, consumption of pollen containing the fungicide Pristine® at field-relevant concentrations by honey bee colonies increased pollen foraging, caused earlier foraging, lowered worker survival, and reduced colony population size. Because most pollen is consumed by young adults, we hypothesized that Pristine® (25.2% boscalid, 12.8% pyraclostrobin) in pollen exerts its negative effects on honey bee colonies primarily on the adult stage. To rigorously test this hypothesis, we used a cross-fostering experimental design, with bees reared in colonies provided Pristine® incorporated into pollen patties at a supra-field concentration (230 mg/kg), only in the larvae, only in the adult, or both stages. In contrast to our predictions, exposure to Pristine® in either the larval or adult stage reduced survival relative to control bees not exposed to Pristine®, and exposure to the fungicide at both larval and adult stages further reduced survival. Adult exposure caused precocious foraging, while larval exposure increased the tendency to forage for pollen. These results demonstrate that pollen containing Pristine® can induce significant negative effects on both larvae and adults in a hive, though the magnitude of such effects may be smaller at field-realistic doses. To further test the potential negative effects of direct consumption of Pristine® on larvae, we reared them in vitro on food containing Pristine® at a range of concentrations. Consumption of Pristine® reduced survival rates of larvae at all concentrations tested. Larval and adult weights were only reduced at a supra-field concentration. We conclude that consumption of pollen containing Pristine® by field honey bee colonies likely exerts impacts on colony population size and foraging behavior by affecting both larvae and adults.


Assuntos
Abelhas/fisiologia , Compostos de Bifenilo/toxicidade , Fungicidas Industriais/toxicidade , Niacinamida/análogos & derivados , Estrobilurinas/toxicidade , Animais , Fungicidas Industriais/farmacologia , Insetos , Larva/efeitos dos fármacos , Niacinamida/toxicidade , Praguicidas/toxicidade , Néctar de Plantas , Pólen/efeitos dos fármacos , Polinização
15.
Microorganisms ; 9(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673613

RESUMO

Nosema ceranae (Opisthosporidia: Microsporidia) is an emergent intracellular parasite of the European honey bee (Apis mellifera) and causes serious Nosema disease which has been associated with worldwide honey bee colony losses. The only registered treatment for Nosema disease is fumagillin-b, and this has raised concerns about resistance and off-target effects. Fumagillin-B is banned from use in honey bee colonies in many countries, particularly in Europe. As a result, there is an urgent need for new and effective therapeutic options to treat Nosema disease in honey bees. An RNA interference (RNAi)-based approach can be a potent strategy for controlling diseases in honey bees. We explored the therapeutic potential of silencing the sequences of two N. ceranae encoded spore wall protein (SWP) genes by means of the RNAi-based methodology. Our study revealed that the oral ingestion of dsRNAs corresponding to SWP8 and SWP12 used separately or in combination could lead to a significant reduction in spore load, improve immunity, and extend the lifespan of N. ceranae-infected bees. The results from the work completed here enhance our understanding of honey bee host responses to microsporidia infection and highlight that RNAi-based therapeutics are a promising treatment for honey bee diseases.

16.
Environ Pollut ; 274: 116533, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529906

RESUMO

Commercial beekeepers in many locations are experiencing increased annual colony losses of honey bees (Apis mellifera), but the causes, including the role of agrochemicals in colony losses, remain unclear. In this study, we investigated the effects of chronic consumption of pollen containing a widely-used fungicide (Pristine®), known to inhibit bee mitochondria in vitro, which has recently been shown to reduce honey bee worker lifespan when field-colonies are provided with pollen containing field-realistic levels of Pristine®. We fed field colonies pollen with a field-realistic concentration of Pristine® (2.3 ppm) and a concentration two orders of magnitude higher (230 ppm). To challenge flight behavior and elicit near-maximal metabolic rate, we measured flight quality and metabolic rates of bees in two lower-than-normal air densities. Chronic consumption of 230 but not 2.3 ppm Pristine® reduced maximal flight performance and metabolic rates, suggesting that the observed decrease in lifespans of workers reared on field-realistic doses of Pristine®-laced pollen is not due to inhibition of flight muscle mitochondria. However, consumption of either the 230 or 2.3 ppm dose reduced thorax mass (but not body mass), providing the first evidence of morphological effects of Pristine®, and supporting the hypothesis that Pristine® reduces forager longevity by negatively impacting digestive or nutritional processes.


Assuntos
Fungicidas Industriais , Animais , Abelhas , Digestão , Fungicidas Industriais/toxicidade , Longevidade , Pólen , Tórax
17.
PLoS Pathog ; 17(2): e1009270, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600478

RESUMO

Nosemosis C, a Nosema disease caused by microsporidia parasite Nosema ceranae, is a significant disease burden of the European honey bee Apis mellifera which is one of the most economically important insect pollinators. Nevertheless, there is no effective treatment currently available for Nosema disease and the disease mechanisms underlying the pathological effects of N. ceranae infection in honey bees are poorly understood. Iron is an essential nutrient for growth and survival of hosts and pathogens alike. The iron tug-of-war between host and pathogen is a central battlefield at the host-pathogen interface which determines the outcome of an infection, however, has not been explored in honey bees. To fill the gap, we conducted a study to investigate the impact of N. ceranae infection on iron homeostasis in honey bees. The expression of transferrin, an iron binding and transporting protein that is one of the key players of iron homeostasis, in response to N. ceranae infection was analysed. Furthermore, the functional roles of transferrin in iron homeostasis and honey bee host immunity were characterized using an RNA interference (RNAi)-based method. The results showed that N. ceranae infection causes iron deficiency and upregulation of the A. mellifera transferrin (AmTsf) mRNA in honey bees, implying that higher expression of AmTsf allows N. ceranae to scavenge more iron from the host for its proliferation and survival. The suppressed expression levels of AmTsf via RNAi could lead to reduced N. ceranae transcription activity, alleviated iron loss, enhanced immunity, and improved survival of the infected bees. The intriguing multifunctionality of transferrin illustrated in this study is a significant contribution to the existing body of literature concerning iron homeostasis in insects. The uncovered functional role of transferrin on iron homeostasis, pathogen growth and honey bee's ability to mount immune responses may hold the key for the development of novel strategies to treat or prevent diseases in honey bees.


Assuntos
Abelhas/microbiologia , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Microsporidiose/prevenção & controle , Nosema/fisiologia , Transferrinas/metabolismo , Animais , Microsporidiose/imunologia , Microsporidiose/metabolismo , Microsporidiose/microbiologia , Transferrinas/genética
18.
Environ Pollut ; 269: 115964, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33261965

RESUMO

Honey bees (Apis mellifera) and other pollinator populations are declining worldwide, and the reasons remain controversial. Based on laboratory testing, fungicides have traditionally been considered bee-safe. However, there have been no experimental tests of the effects of fungicides on colony health under field conditions, and limited correlational data suggests there may be negative impacts on bees at levels experienced in the field. We tested the effects of one of the most commonly used fungicides on colony health by feeding honey bee colonies pollen containing Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) at four levels that bracketed concentrations we measured for pollen collected by bees in almond orchards. We also developed a method for calculating per-bee and per-larva dose. Pristine® consumption significantly and dose-dependently reduced worker lifespan and colony population size, with negative health effects observed even at the lowest doses. The lowest concentration we tested caused a 15% reduction in the worker population at an estimated dosage that was three orders of magnitude below the estimated LD15 values for previous acute laboratory studies. The enhanced toxicity under field conditions is at least partially due to activation of colonial nutritional responses missed by lab tests. Pristine® causes colonies to respond to perceived protein malnutrition by increasing colony pollen collection. Additionally, Pristine induces much earlier transitioning to foraging in individual workers, which could be the cause of shortened lifespans. These findings demonstrate that Pristine® can negatively impact honey bee individual and colony health at concentrations relevant to what they experience from pollination behavior under current agricultural conditions.


Assuntos
Fungicidas Industriais , Agricultura , Animais , Abelhas , Fungicidas Industriais/toxicidade , Larva , Pólen , Polinização
19.
Exp Appl Acarol ; 82(4): 455-473, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33125599

RESUMO

Varroa destructor is an ectoparasitic mite of immature and adult honey bees that can transmit several single-stranded RNA viruses to its host. Varroa reproduce in brood cells, and mite populations increase as colonies produce brood in spring and summer. Mite numbers also can sharply rise, particularly in the fall, by the migration of varroa into hives on foragers. Colonies with high levels of varroa and viruses often die over the winter. Feeding colonies pollen might keep virus levels low and improve survival because of the positive effects of pollen on immunity and colony growth. We compared varroa and virus levels and overwinter survival in colonies with (fed) and without (unfed) supplemental pollen. We also measured the frequency of capturing foragers with mites (FWM) at colony entrances to determine its relationship to varroa and virus levels. Colonies fed supplemental pollen were larger than unfed colonies and survived longer. Varroa populations and levels of Deformed wing virus (DWV) rose throughout the season, and were similar between fed and unfed colonies. The growth of varroa populations was correlated with FWM in fed and unfed colonies, and significantly affected DWV levels. Increasing frequencies of FWM and the effects on varroa populations might reduce the positive influence of supplemental pollen on immune function. However, pollen feeding can stimulate colony growth and this can improve colony survival.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas , Pólen , Estações do Ano
20.
Front Neurosci ; 14: 231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265638

RESUMO

Pollen nutrition is necessary for proper growth and development of adult honey bees. Yet, it is unclear how pollen affects the honey bee brain and behavior. We investigated whether pollen affects amino acids in the brains of caged, nurse-aged bees, and what the behavioral consequences might be. We also tested whether parasitic stress altered this relationship by analyzing bees infected with prevalent stressor, Nosema ceranae. Levels of 18 amino acids in individual honey bee brains were measured using Gas Chromatography - Mass Spectrometry at two different ages (Day 7 and Day 11). We then employed the proboscis extension reflex to test odor learning and memory. We found that the honey bee brain was highly responsive to pollen. Many amino acids in the brain were elevated and were present at higher concentration with age. The majority of these amino acids were non-essential. Without pollen, levels of amino acids remained consistent, or declined. Nosema-infected bees showed a different profile. Infection altered amino acid levels in a pollen-dependent manner. The majority of amino acids were lower when pollen was given, but higher when pollen was deprived. Odor learning and memory was not affected by feeding pollen to uninfected bees; but pollen did improve performance in Nosema-infected bees. These results suggest that pollen in early adulthood continues to shape amino acid levels in the brain with age, which may affect neural circuitry and behavior over time. Parasitic stress by N. ceranae modifies this relationship revealing an interaction between infection, pollen nutrition, and behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...